		Technical Report Documentation Page					
1. Report No. FHWA/TX-11/5-5135-01-1	2. Government Accession	n No.	3. Recipient's Catalog N	0.			
4. Title and Subtitle			5. Report Date				
IMPLEMENTATION OF THE SO			February 2011				
INTO TEST METHOD TEX-113-E	E: TECHNICAL RE	PORT	Published: April				
			6. Performing Organizat	ion Code			
7. Author(s)			8. Performing Organizat	ion Report No.			
Stephen Sebesta and Ross Taylor			Report 5-5135-02	1-1			
9. Performing Organization Name and Address			10. Work Unit No. (TRA	IS)			
Texas Transportation Institute							
The Texas A&M University System			11. Contract or Grant No Droject 5 5125 0				
College Station, Texas 77843-3135			Project 5-5135-0				
12. Sponsoring Agency Name and Address			13. Type of Report and P				
Texas Department of Transportation			Technical Report				
Research and Technology Implement P. O. Box 5080	Intation Office		September 2008-	e			
Austin, Texas 78763-5080			14. Sponsoring Agency C	Lode			
15. Supplementary Notes							
Project performed in cooperation with	ith the Texas Depar	tment of Transport	ation and the Fede	eral Highway			
Administration.		F					
Project Title: Implementation of the	Soil Compactor A	nalyzer for Tex-11	3-Е				
URL: http://tti.tamu.edu/documents	-	5					
16. Abstract							
Test method Tex-113-E prepares la							
compactor. These specimens are us							
historical Tex-113-E required a cert							
that energy existed until Texas Depa							
Compactor Analyzer (SCA). The S							
hammer. In this project, the SCA sy			-				
machine and then turns off the comp			•••				
then evaluated how changing the ma			-				
number of blows per lift, impacted t							
the compactor, so the prescribed am		• 11	•				
operational parameters. The results total energy per lift between 740 and		0					
with no impact on test results. Fina		-	• •				
statistics of Tex-113-E compaction.							
compaction energy. Total compaction	-		-				
or approximately 1 percent of the sp	••	-	-				
about 2.5 pounds per cubic foot (pc:			• •				
17. Key Words	.)	18. Distribution Statemer					
Tex-113-E, Soil Compactor Analyz	er, Base	No restrictions. This document is available to the					
Compaction, Compaction Energy, A	Automatic	public through NTIS:					
Tamper, Lab Compaction		National Technic	al Information Ser	vice			
		Alexandria, Virgi	nia 22312				
		http://www.ntis.g	OV	T			
19. Security Classification (of this report)	20. Security Classification	n (of this page)	21. No. of Pages	22. Price			
Unclassified	Unclassified		54				
Form DOT F 1700.7 (8-72)			Reproduction of complete	a page authorized			

IMPLEMENTATION OF THE SOIL COMPACTOR ANALYZER INTO TEST METHOD TEX-113-E: TECHNICAL REPORT

by

Stephen Sebesta Associate Research Scientist Texas Transportation Institute

and

Ross Taylor Student Technician Texas Transportation Institute

Report 5-5135-01-1 Project 5-5135-01 Project Title: Implementation of the Soil Compactor Analyzer for Tex-113-E

Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

February 2011 Published: April 2012

TEXAS TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas 77843-3135

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the Federal Highway Administration (FHWA) or the Texas Department of Transportation (TxDOT). This report does not constitute a standard, specification, or regulation. The researcher in charge was Stephen Sebesta.

ACKNOWLEDGMENTS

This project was conducted in cooperation with TxDOT and FHWA. The guidance provided by the project director, Caroline Herrera, P.E., and the input and assistance of Jaime Gandera, P.E., significantly contributed to the success of this project. Finally, the participation of labs in the interlaboratory study is greatly appreciated.

TABLE OF CONTENTS

List of Figuresvi	iii
List of Tables	ix
Executive Summary	1
Chapter 1. Evaluation of Impact Hammer Adjustments on Measured Material Properties	3
Introduction	
Summary of Experiment	3
Material Used in Testing	4
Presentation of Results	4
Summary of Machine Parameters Used	4
Results from Moisture Density Relationship	
Results from Dielectric, Modulus, and Strength Tests	
Conclusions 1	0
Chapter 2. Precision of Tex-113-E Compaction with the SCA 2	23
Summary	23
Method for Interlaboratory Study	23
Materials Used in ILS	
Results from Interlaboratory Study	24
Presentation of Precision Statistics	32
Conclusions	33
Chapter 3. Conclusions and Recommendations	35
Conclusions and Recommendations on Machine Operational Tolerances	35
Conclusions and Recommendations from Interlaboratory Study	35
Appendix A: Test Report from Flex Base Used in Impact Hammer Adjustments	37
Appendix B: Results from Specimens Tested for Impact Hammer Adjustments	
Appendix C: Individual Lab Results from ILS 4	

LIST OF FIGURES

Figure 1.1. Triplicate Moisture-Density Curves for Samples Molded at Energies per Blow of	
12.5 ft-lbf and Total Energy per Lift of 750 ft-lbf	5
Figure 1.2. Triplicate Moisture-Density Curves for Samples Molded at Energies per Blow of 1	5
ft-lbf and Total Energy per Lift of 750 ft-lbf	6
Figure 1.3. Triplicate Moisture-Density Curves for Samples Molded at Energies per Blow of	
16.7 ft-lbf and Total Energy per Lift of 750 ft-lbf	6
Figure 1.4. No Difference in Dry Density or Effort Observed among Samples from Different	
Energies per Blow	8
Figure 1.5. Summary of Results from Dielectric Testing	9
Figure 1.6. Summary of Results from Modulus Testing	9
Figure 1.7. Summary of Results from Unconfined Strength Testing after Tex-117-E Part II	. 10
Figure 1.8. Summary of Moisture Contents after Strength Testing	. 10
Figure 2.1. Between-Lab Consistency Statistics for Total Compaction Energy.	. 26
Figure 2.2. Within-Lab Consistency Statistics for Total Compaction Energy.	. 27
Figure 2.3. Between-Lab Consistency Statistics for Total Compaction Effort.	. 29
Figure 2.4. Within-Lab Consistency Statistics for Total Compaction Effort.	
Figure 2.5. Between-Lab Consistency Statistics for Dry Density.	
Figure 2.6. Within-Lab Consistency Statistics for Dry Density.	. 32

LIST OF TABLES

Table 1.1. Experimental Design to Investigate Impact of Number of Drops per Lift on Test	
Results	
Table 1.2. Summary of Machine Parameters for Treatments Investigated	5
Table 1.3. Tex-113-E Moisture-Density Results with Varying Energies per Blow	
Table 1.4. Machine Parameters for Dielectric, Modulus, and Strength Specimens	7
Table 2.1. Summary of Materials Used in Interlaboratory Study	
Table 2.2. ILS Worksheet for Total Compaction Energy (ft-lbf)—Groesbeck	25
Table 2.3. ILS Worksheet for Total Compaction Energy (ft-lbf)—Spicewood	
Table 2.4. ILS Worksheet for Total Compaction Energy (ft-lbf)-Oklahoma.	
Table 2.5. ILS Worksheet for Total Compaction Effort (ft-lbf/in ³)—Groesbeck	27
Table 2.6. ILS Worksheet for Total Compaction Effort (ft-lbf/in ³)—Spicewood	
Table 2.7. ILS Worksheet for Total Compaction Effort (ft-lbf/in ³)—Oklahoma	28
Table 2.8. ILS Worksheet for Dry Density (pcf)—Groesbeck	
Table 2.9. ILS Worksheet for Dry Density (pcf)—Spicewood	30
Table 2.10. ILS Worksheet for Dry Density (pcf)—Oklahoma.	
Table 2.11. Precision Statistics for Total Compaction Energy (ft-lbf) in Tex-113-E	
Table 2.12. Precision Statistics for Total Compaction Effort (ft-lbf/in ³) in Tex-113-E	
Table 2.13. Precision Statistics for Sample Dry Density (pcf) after Tex-117-E Part II.	
Table 2.14. Precision Estimates from Pooled Data	
Table B.1. Results from Samples Targeting 12.5 ft-lbf per Blow.	
Table B.2. Results from Samples Targeting 15 ft-lbf per Blow.	
Table B.3. Results from Samples Targeting 16.7 ft-lbf per Blow.	
Table C.1. ILS Results from Laboratory 1.	
Table C.2. ILS Results from Laboratory 2.	
Table C.3. ILS Results from Laboratory 3.	
Table C.4. ILS Results from Laboratory 4.	
Table C.5. ILS Results from Laboratory 5.	
Table C.6. ILS Results from Laboratory 6.	56

EXECUTIVE SUMMARY

In Test Method Tex-113-E, the Texas Department of Transportation (TxDOT) employs an impact hammer method of sample compaction for laboratory preparation of road base materials for testing. Although the historical Tex-113-E required a certain amount of compaction energy, no method to validate attainment of that energy existed until TxDOT Project 0-5135 developed the Soil Compactor Analyzer (SCA). The SCA measures the kinetic energy applied by each drop of the impact hammer. In this implementation project, the research team modified the SCA to not only measure the compaction energy, but also to control the automatic tamper and stop the machine upon attainment of the prescribed energy per lift. Fifteen SCA units with machine control capability were delivered to TxDOT in this implementation project. Additionally, the 12 SCA units delivered to TxDOT in prior Project 0-5135 were retrofitted with machine control capability in this implementation project, yielding 27 SCA systems in TxDOT with machine control capability.

As TxDOT prepared to officially implement the SCA into Test Method Tex-113-E, the researchers also investigated the influence of changing machine operational parameters on test results while using the SCA to maintain the prescribed amount of energy per lift. Machine operational parameters include the hammer weight, drop height, and number of drops per lift. Varying the hammer weight and drop height will result in different energies per drop, which results in a different number of drops per lift to attain the prescribed energy. In this project, parameters were varied to perform test series with average energies per drop between approximately 12.5 and 16.7 ft-lbf, which resulted in a range of 45 to 60 drops per lift. Tests investigated included the moisture-density relationship; the dielectric constant and seismic modulus, both at the time of molding and after Tex-117-E Part II conditioning; the unconfined compressive strength (UCS) per Tex-117-E Part II; and the moisture content after compressive strength testing. The results showed that while using the current TxDOT-approved SCA to control total energy per lift between 740 and 765 ft-lbf, the number of blows per lift may vary between 45 and 60 with no impact on test results.

As a final stage in this project, an interlaboratory study was conducted to develop precision statistics for Tex-113-E compaction. This study showed that the SCA enables excellent precision of total compaction energy. Total compaction energy should be repeatable and reproducible within about 27 ft-lbf, or approximately 1 percent of the specification value. Compacted dry density should be repeatable within about 2.5 pounds per cubic foot (pcf) and reproducible within about 3.3 pcf.

CHAPTER 1. EVALUATION OF IMPACT HAMMER ADJUSTMENTS ON MEASURED MATERIAL PROPERTIES

INTRODUCTION

With TxDOT's recent inclusion of the SCA in Tex-113-E, labs can now control and obtain the required amount of total energy applied to each lift during compaction of flexible base test specimens. The current Tex 113-E requires 750 ft-lbf per lift to be reached within 50 ± 5 blows of a 10 ± 0.02 lb hammer. To investigate these tolerances, researchers at the Texas Transportation Institute (TTI) employed a Grade 2 flexible base and systematically varied the automatic tamper's drop height and weight to yield blows per lift during sample fabrication ranging from 45 to 60 while still maintaining a total energy per lift of approximately 750 ft-lbf. Test series with three different target numbers of blows per lift were conducted. The results showed that while using the current TxDOT-approved SCA to control total energy per lift between 740 and 765 ft-lbf, the number of blows per lift may vary between 45 and 60 with no impact on test results. Tests investigated included the moisture-density relationship from Tex-113-E; the dielectric constant and seismic modulus, both at the time of molding and after Tex-117-E Part II conditioning; the UCS per Tex-117-E Part II; and the moisture content after compressive strength testing.

Kinetic energy during compaction with the automatic tamper used in Tex-113-E is most effectively increased by obtaining increases in the impact velocity. With the tampers used in TxDOT, this is best accomplished through decreasing friction losses as much as possible and increasing the drop height. If additional adjustment is necessary to obtain the prescribed total energy per lift within 45 and 60 blows, adding weight to the hammer is the next step to take.

SUMMARY OF EXPERIMENT

Table 1.1 presents the experiment used to investigate energy tolerances and drop height adjustments. In essence, the experiment was designed to use varying hammer drop heights and hammer weights to obtain the different target energies per blow. These different energies per blow in turn result in the different levels of target number of blows per lift while maintaining the total sample compaction energy requirement of 750 ft-lbf per lift.

Target Average Impact Energy per Blow (ft-lbf)	Target Number of Drops per Lift	Tests Performed in Triplicate for Each Target Level
12.5	60	Tex-113-E moisture-density relationship.Compressive strength at 0 psi lateral pressure
15.0	50	(Tex-117-E Part II).
16.7	45	 Dielectric constant at molding and immediately before breaking. Seismic modulus at molding and immediately before breaking. Moisture content after breaking.

Table 1.1. Experimental Design to Investigate Impact of Number of Dropsper Lift on Test Results.

MATERIAL USED IN TESTING

For these tests, researchers used a Grade 2 base from the Vulcan Groesbeck pit. Appendix A presents the TxDOT test report from the material used.

PRESENTATION OF RESULTS

Appendix B presents the results from the specimens tested. In summary, the results revealed that when the target compaction energy was controlled by the current TxDOT-approved SCA and achieved within 45 to 60 drops per lift:

- No statistical difference existed in the maximum dry density or optimum water content.
- No statistical difference existed in the dielectric constant at time of molding or after Tex 117-E Part II conditioning.
- No statistical difference existed in the seismic modulus at the time of molding or after Tex 117-E Part II conditioning.
- No statistical difference existed in the unconfined compressive strength after Tex-117-E Part II conditioning.
- The moisture content after breaking was less with specimens compacted at average energies of 16.7 ft-lbf per drop (i.e., samples only requiring 45 blows to reach the target energy per lift). Although statistically significant, in terms of performance this difference is insignificant since the mean strengths did not differ among the treatments.

SUMMARY OF MACHINE PARAMETERS USED

Table 1.2 summarizes the machine parameters and average effort applied for each treatment. The research team tested a total of 45 specimens (15 for each treatment). The desired range of blows per lift and average energy per blow were obtained while maintaining efforts within the range implied in TxDOT's allowable tolerances on sample height. The average drop height of 18.6 inches when targeting 16.7 ft-lbf per blow was obtained by maximizing the distance between the engager and the releaser body on the automatic tamper (i.e., with this particular tamper, that drop height was the maximum drop height attainable).

Target Energy per Blow (ft-lbf)	Hammer weight used (Ib)	AVG # blows per lift	AVG Drop Ht (in.)	AVG Energy per blow (ft-lbf)	AVG Total Energy per Lift (ft-lbf)	AVG Effort (ft-lbf/in3)
12.5	10.31	61	16.2	12.4	750.7	13.3
15	11.04	52	18	14.6	751.3	13.6
16.7	12.21	45	18.6	16.8	759.2	13.2

 Table 1.2. Summary of Machine Parameters for Treatments Investigated.

RESULTS FROM MOISTURE DENSITY RELATIONSHIP

Figures 1.1–1.3 illustrate the moisture-density relationships measured in triplicate for the three target energies per blow. Table 1.2 showed these target energies per blow were 12.5, 15, and 16.7 ft-lbf while maintaining total compaction energy of 750 ft-lbf per lift. Since each moisture-density curve requires 4 samples, a total of 36 samples were required to generate these data. Appendix B presents the entirety of each sample's results in the column labeled "113-E Moisture-Density Samples."

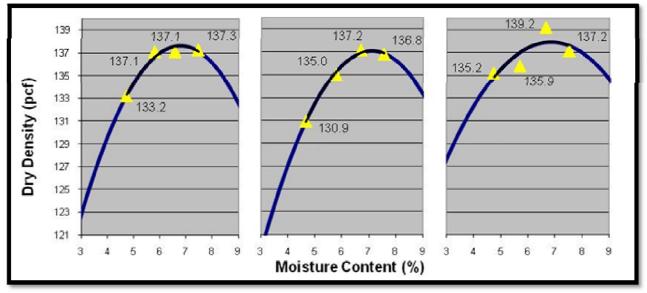


Figure 1.1. Triplicate Moisture-Density Curves for Samples Molded at Energies per Blow of 12.5 ft-lbf and Total Energy per Lift of 750 ft-lbf. Left to right: Replicate 1, 2, and 3

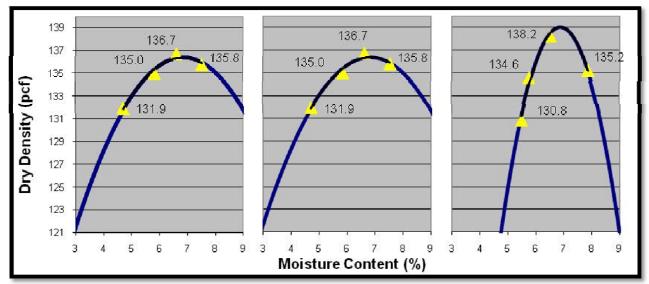
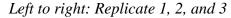



Figure 1.2. Triplicate Moisture-Density Curves for Samples Molded at Energies per Blow of 15 ft-lbf and Total Energy per Lift of 750 ft-lbf.

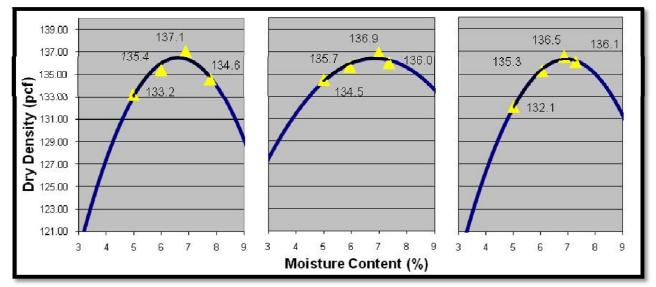


Figure 1.3. Triplicate Moisture-Density Curves for Samples Molded at Energies per Blow of 16.7 ft-lbf and Total Energy per Lift of 750 ft-lbf.

Left to right: Replicate 1, 2, and 3

Each replicate in Figures 1.1–1.3 generated optimum moisture content (OMC) and maximum dry density output using TxDOT's approved Tex-113-E spreadsheet. Table 1.3 summarizes these OMC and maximum dry density results from each replicate. The data suggest, and statistical tests confirm, that no significant difference in the average maximum dry density or optimum water content existed among the treatments. So long as the SCA was used to control the compaction energy at 750 ft-lbf per lift, the optimum moisture and max density were statistically equivalent regardless of whether the average energy per blow was 12.5, 15, or 16.7 ft-lbf.

	12.5 ft-lbf per blow			15 ft-lbf per blow			16.7 ft-lbf per blow			
Replicate	Max Density (pcf)	OMC (%)	AVG Total Energy per Sample (ft-lbf)	Max Density (pcf)	OMC (%)	AVG Total Energy per Sample (ft-lbf)	Max Density (pcf)	OMC (%)	AVG Total Energy per Sample (ft-lbf)	
1	137.6	6.8	3002	138.7	7	3000	136,5	6,6	3034	
2	137.1	7.1	2997	136.4	6.8	2991	136.5	6.8	3036	
3	138	6.8	3025	139	6.9	3023	136.3	6.9	3036	
AVG	137.6	6.9	3008.0	138.0	6.9	3004.7	136.4	6.8	3035.3	

Table 1.3. Tex-113-E Moisture-Density Results with Varying Energies per Blow.

RESULTS FROM DIELECTRIC, MODULUS, AND STRENGTH TESTS

To evaluate the potential impact of the different energy treatments on the dielectric, modulus, and strength tests, specimens were made at each treatment level while targeting the appropriate average maximum density and optimum water content from Table 1.3. The dielectric and modulus tests were performed on the same specimens used for strength testing. Table 1.4 presents the machine parameters from these tests; the results are the average of three replicates per target energy level. Appendix B presents the entirety of each sample's results in the column labeled "Test Samples at 113-E Optimum."

Table 1.4. Machine Parameters for Dielectric, Modulus, and Strength Specimens.

Target Energy per Blow (ft-lbf)	Hammer weight (Ib)	AVG # blows per lift	AVG Drop Ht (in.)	AVG Energy per blow (ft-lbf)	Avg Effort (ft-lbf/in3)
12.5	10.31	59	17.2	12.8	13.4
15	11.04	52	18.2	14.6	13.45
16.7	12.21	45	18.6	16.9	13.45

Figure 1.4 illustrates, and statistical tests confirm, that no difference in mean sample dry density or compaction effort existed among the specimens compacted at the different energies per blow for the dielectric, modulus, and strength testing experiments. This is important since varying efforts could potentially impact density, which in turn could impact modulus and strength.

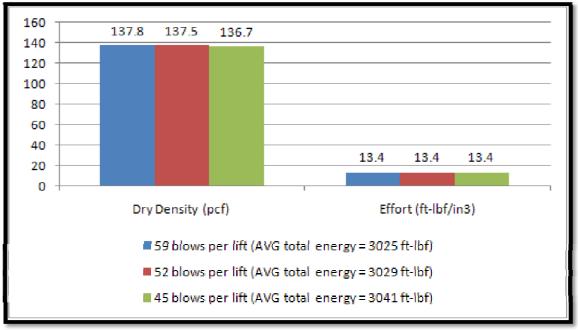


Figure 1.4. No Difference in Dry Density or Effort Observed among Samples from Different Energies per Blow.

Note: Each result is the average of three specimens. No significant difference exists among means.

Figures 1.5 through 1.8 illustrate that no statistically significant differences existed among the means for dielectric, seismic modulus, or compressive strength at 0 psi lateral pressure per Tex-17-E Part II. Figure 1.8 presents the moisture content results after breaking, which showed specimens prepared with 45 blows per lift had average water content 0.2 percentage points lower than the other treatments. This observation was deemed unimportant from a performance standpoint, since no differences in modulus or strength were observed.

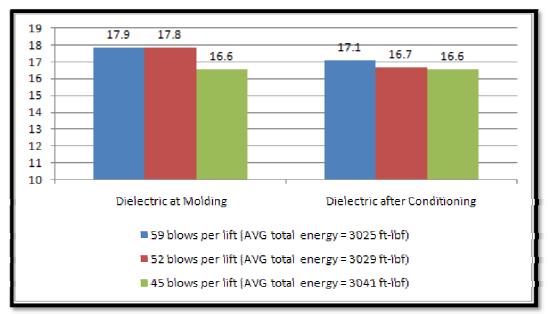


Figure 1.5. Summary of Results from Dielectric Testing.

Note: Each result is the average of three specimens. No significant difference exists among means.

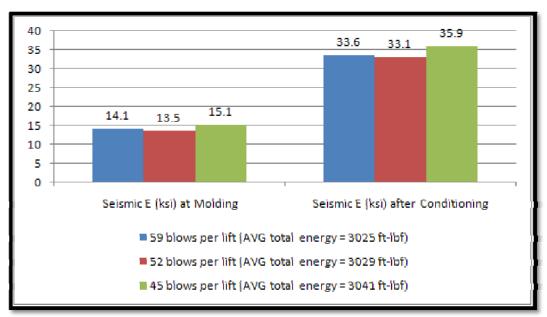
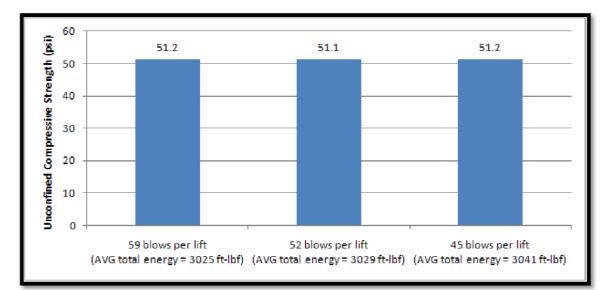
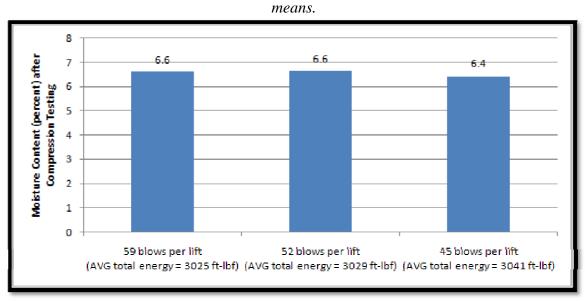




Figure 1.6. Summary of Results from Modulus Testing.

Note: Each result is the average of three specimens. No significant difference exists among means.

Figure 1.7. Summary of Results from Unconfined Strength Testing after Tex-117-E Part II. *Note: Each result is the average of three specimens. No significant difference exists among*

Note: Each result is the average of three specimens. Mean water content after conditioning from specimens with 45 blows per lift was lower than other treatments.

CONCLUSIONS

The data show the range of blows per lift in Tex-113-E can vary from at least 45 to 60 as long as the total energy per lift is controlled by the SCA to average approximately 750 ft-lbf. In the experiment conducted to determine this finding, the total energy per lift was always between 740 and 765 ft-lbf. When achieving this energy per lift with no less than 45 and no more than 60 blows, no differences in important test results, such as maximum dry density, optimum water content, dielectric constant, seismic modulus, or unconfined compressive strength, existed.

CHAPTER 2. PRECISION OF TEX-113-E COMPACTION WITH THE SCA

SUMMARY

With the implementation of the SCA into Test Method Tex-113-E, TxDOT desired to determine if the precision of the test method improved. To facilitate answering this question, an interlaboratory study was conducted to develop precision statistics for both the applied total compaction energy and effort, and for important measured sample properties including moisture content and specimen dry density. The end of this chapter presents precision statements for each of these parameters. The results show excellent precision of total compaction energy when the SCA is used to control the compactor. Total compaction energy should be repeatable and reproducible within 30 ft-lbf, or approximately 1 percent of the specification value. Compacted dry density should be repeatable within 2 to 3 pounds per cubic foot and reproducible within 3 to 4 pcf.

METHOD FOR INTERLABORATORY STUDY

To develop precision statistics for Tex-113-E compaction, TTI researchers followed American Society for Testing and Materials (ASTM) E691-09. With the help of TxDOT, the participation of six laboratories was obtained. Next, three materials were selected for use in the experiment. These are the minimum participatory and testing requirements for conducting an interlaboratory study (ILS) per E691-09.

To gather the necessary data, the research team recombined samples from each of the materials and delivered three samples of each material to each participating lab. The laboratories then:

- Molded the samples at the provided optimum moisture content.
- Dried the samples and determined sample compacted dry density.
- Reported the compaction energy and density results to TTI.

MATERIALS USED IN ILS

In conjunction with the TxDOT project director, two limestones and one sandstone base were selected for use in the interlaboratory study. Table 2.1 summarizes the key properties of the materials reconstituted for distribution to the participating laboratories.

Tuble 211: Summury of Mutching Osed in Internusbrutory Study.								
	Groesbeck	Spicewood	Oklahoma					
1 3/4	2.5	0.0	0.0					
1 1/4	14.7	4.7	1.0					
7/8	29.2	15.9	11.6					
5/8	41.0	26.9	28.9					
3/8	54.7	42.1	44.1					
#4	66.8	59.3	61.5					
#40	89.3	95.3	81.5					
	2*	7	6					
Wet Ball Mill Value		24	36					
Percent Soil Binder Increase		6	10					
re (Tex-113-E Optimum)	6.9	5.4	7.6					
	1 1/4 7/8 5/8 3/8 #4 #40 alue der Increase	$\begin{array}{c ccccc} 1 & 3/4 & & 2.5 \\ \hline 1 & 1/4 & & 14.7 \\ \hline 7/8 & & 29.2 \\ \hline 5/8 & & 41.0 \\ \hline 3/8 & & 54.7 \\ \hline \#4 & & 66.8 \\ \hline \#40 & & 89.3 \\ \hline & & 2^* \\ \hline alue & & 40 \\ \hline der Increase & & 16 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Table 2.1. Summary of Materials Used in Interlaboratory Study.

*Calculated from linear shrinkage.

RESULTS FROM INTERLABORATORY STUDY

Appendix C presents reported data by testing laboratory. The following sections present the worksheets and consistency evaluation for the parameters evaluated. These parameters included:

- Total compaction energy.
- Total compaction effort.
- Sample dry density.

In this ILS, with the number of labs and number of replicates, the critical value of the betweenlab consistency statistic h was 1.92, and the critical value of the within-lab consistency statistic kwas 1.98. Data generating consistency statistics exceeding these values were investigated for possible sources of error.

Calculation and Display of Statistics—Total Compaction Energy

Tables 2.2–2.4 present each lab's data and the ILS worksheet for the measured total compaction energy. Figures 2.1 and 2.2 present the between-lab consistency statistic, h, and the within-lab consistency statistic, k, for these data. No problematic patterns were observed in the consistency statistics, and no consistency statistic exceeded the critical value.

	Sample							
Lab	1	2	3	x _{bar}	s	d	h	k
1	3023.16	3032.44	*	3027.80	6.56	3.04	0.48	0.63
2	3017.43	3034.27	2995.33	3015.68	19.53	-9.08	-1.44	1.88
3	3031.28	3031.61	3037.05	3033.31	3.24	8.56	1.36	0.31
4	3014.39	3022.75	3022.8	3019.98	4.84	-4.78	-0.76	0.47
5	3034.335	3021.4	*	3027.87	9.15	3.11	0.49	0.88
6	3035.69	3019.35	3016.66	3023.90	10.30	-0.86	-0.14	0.99
			X _{barbar}	3024.76				
*not te	sted due to	o	S _{xbar}	6.30				
sample damage s		s _r	10.39					
			(s _r)*	10.57				

 Table 2.2. ILS Worksheet for Total Compaction Energy (ft-lbf)—Groesbeck.

 Table 2.3. ILS Worksheet for Total Compaction Energy (ft-lbf)—Spicewood.

	Sample							
Lab	1	2	3	X bar	s	d	h	k
1	3028.21	3019.16	3045.63	3031.00	13.45	6.54	1.30	1.50
2	3025.36	3032.06	3016.49	3024.64	7.81	0.17	0.03	0.87
3	3033.85	3022.51	*	3028.18	8.02	3.72	0.74	0.89
4	3006.88	3024.14	3022.59	3017.87	9.55	- <mark>6.</mark> 59	-1.31	1.06
5	3022.79	3010.16	3025.29	3019.41	8.11	-5.05	-1.00	0.90
6	3023.57	3022.59	3030.88	3025.68	4.53	1.22	0.24	0.50
			X _{barbar}	3024.463				
*Not tes	ted due to	1	S _{xbar}	5.040589				
sample prep error		Sr	8.979374					
			(s _r)*	8.897208				

		Sample						
Lab	1	2	3	X _{bar}	S	d	h	k
1	3026.96	3020.14	3011.80	3019.63	7.59	-6.91	-1.13	0.82
2	3034.71	3038.00	3030.67	3034.46	3.67	7.91	1.29	0.40
3	3029.24	3038.46	3031.31	3033.00	4.84	6.46	1.06	0.52
4	3025.74	3015.02	3027.91	3022.89	6.90	-3.66	-0.60	0.74
5	3031.00	3015.45	3019.37	3021.94	8.09	-4.61	-0.75	0.87
6	3025.58	3010.71	3045.75	3027.35	17.59	0.80	0.13	1.89
			X _{barbar}	3026.546				
			S _{xbar}	6.121048				
			s _r	9.281308				
			(s _r)*	9.741442				

 Table 2.4. ILS Worksheet for Total Compaction Energy (ft-lbf)—Oklahoma.

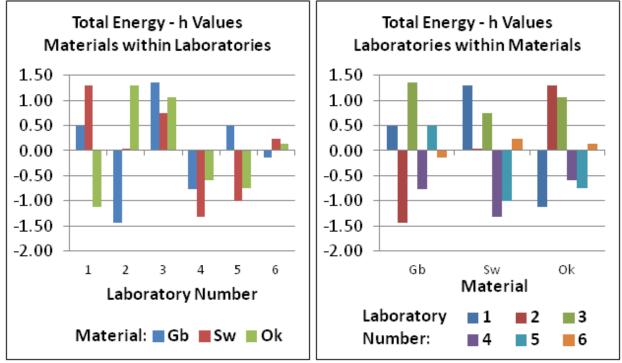


Figure 2.1. Between-Lab Consistency Statistics for Total Compaction Energy.

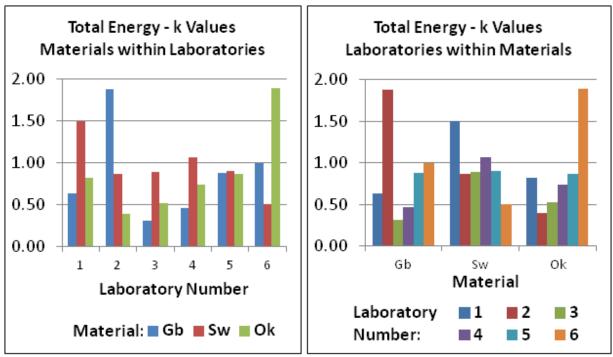


Figure 2.2. Within-Lab Consistency Statistics for Total Compaction Energy.

Calculation and Display of Statistics—Total Compaction Effort

Tables 2.5–2.7 present each lab's data and the ILS worksheet for the measured total compaction effort. Figures 2.3 and 2.4 present the between-lab consistency statistic, h, and the within-lab consistency statistic, k, for these data. No problematic patterns were observed in the consistency statistics, and no consistency statistic exceeded the critical value.

	Sam	Sample ft-lbf/in3						
Lab	1	2	3	x _{bar}	S	d	h	k
1	13.27	13.36	*	13.32	0.06	0.11	0.90	0.57
2	13.17	13.20	12.97	13.11	0.13	-0.09	-0.71	1.18
3	13.02	13.07	12.96	13.02	0.06	-0.19	-1.49	0.55
4	13.28	13.39	13.38	13.35	0.06	0.15	1. 1 8	0.57
5	13.22	13.16	*	13.19	0.04	-0.02	-0.12	0.38
6	13.26	13.02	13.42	13.23	0.20	0.03	0.24	1.87
			x _{barbar}	13.203				
*not teste	*not tested due to			0.1252				
sample da	sample damage		s _r	0.1067				
	· -			0.1526				

 Table 2.5. ILS Worksheet for Total Compaction Effort (ft-lbf/in³)—Groesbeck.

		Sample						
Lab	1	2	3	x _{bar}	s	d	h	k
1	13.57	13.57	13.64	13.59	0.04	0.06	0.48	0.30
2	13.73	13.41	13.60	13.58	0.16	0.05	0.36	1.25
3	13.46	13.41	*	13.44	0.04	-0.09	-0.73	0.31
4	13.75	13.77	13.67	13.73	0.05	0.20	1.57	0.41
5	13.66	13.46	13.29	13.47	0.19	-0.06	-0.49	1.43
6	13.37	13.20	13.57	13.38	0.19	-0.15	-1.19	1.43
			x _{barbar}	13.53099				
*Not teste	*Not tested due to			0.129047				
sample prep error			s _r	0.129985				
(s			(s _r)*	0.167084				

 Table 2.6. ILS Worksheet for Total Compaction Effort (ft-lbf/in³)—Spicewood.

 Table 2.7. ILS Worksheet for Total Compaction Effort (ft-lbf/in³)—Oklahoma.

		Sample						
Lab	1	2	3	x _{bar}	s	d	h	k
1	13.42	13.01	13.54	13.32	0.28	-0.06	-0.25	1.82
2	13.52	13.54	13.53	13.53	0.01	0.15	0.67	0.09
3	13.23	13.23	13.25	13.24	0.01	-0.14	-0.64	0.04
4	13.83	13.77	13.69	13.76	0.07	0.38	1.72	0.45
5	13.09	13.27	13.27	13.21	0.11	-0.17	-0.77	0.69
6	13.05	13.15	13.47	13.22	0.22	-0.16	-0.72	1.41
			x _{barbar}	13.3808				
			S _{xbar}	0.22271				
			s _r	0.15388				
			(s _r)*	0.25571				

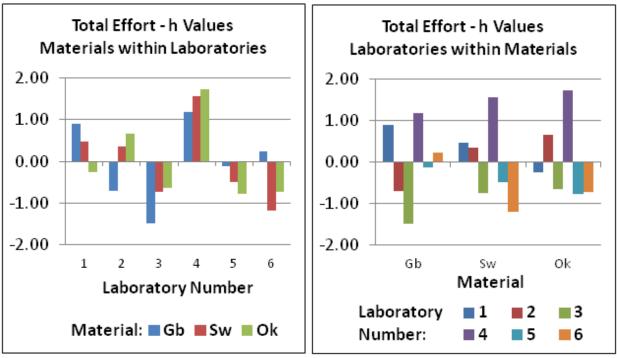


Figure 2.3. Between-Lab Consistency Statistics for Total Compaction Effort.

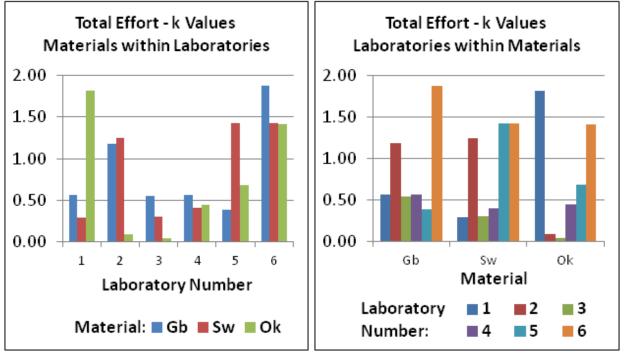


Figure 2.4. Within-Lab Consistency Statistics for Total Compaction Effort.

Calculation and Display of Statistics—Sample Dry Density

Tables 2.8–2.10 present each lab's data and the ILS worksheet for molded sample dry density. Figures 2.5 and 2.6 present the between-lab consistency statistic, h, and the within-lab consistency statistic, k, for these data. While no problematic patterns were observed in the consistency statistics, the k within-lab consistency statistic for lab 6 exceeded the critical value. The data were examined, and no procedural or tabulation errors were discovered, so the data were retained for use in the tabulation of the precision statistics.

		Sample						
Lab	1	2	3	x _{bar}	S	d	h	k
1	137.00	136.30	*	136.65	0.49	0.79	1.21	0.50
2	136.90	136.90	136.00	136.60	0.52	0.74	1.13	0.52
3	135.60	135.50	134.10	135.07	0.84	-0.80	-1.22	0.84
4	135.30	135.60	135.20	135.37	0.21	-0.50	-0.76	0.21
5	135.59	135.60	*	135.60	0.01	-0.27	-0.41	0.01
6	135.81	133.78	138.12	135.90	2.17	0.04	0.06	2.18
			x _{barbar}	135.864				
*not tested due to			S _{xbar}	0.65061				
sample damage			s _r	0.99809				
				1.0428				

 Table 2.8. ILS Worksheet for Dry Density (pcf)—Groesbeck.

Table 2.9. ILS Worksheet for Dry Density (pcf)—Spicewood.

		Sample						
Lab #	1	2	3	x _{bar}	s	d	h	k
1	149.50	149.70	149.20	149.47	0.25	0.92	0.70	0.39
2	150.10	150.50	149.90	150.17	0.31	1.62	1.24	0.47
3	149.00	148.70	*	148.85	0.21	0.30	0.23	0.33
4	149.00	148.50	147.50	148.33	0.76	-0.22	-0.17	1.19
5	148.90	148.20	147.20	148.10	0.85	-0.45	-0.35	1.33
6	146.38	145.40	147.37	146.38	0.99	-2.17	-1.66	1.53
			x _{barbar}	148.55				
*Not teste	ed due to		S _{xbar}	1.302903				
sample pr	sample prep error		S _r	0.643588				
			(s _r)*	1.404882				

	Sample							
Lab	1	2	3	X _{bar}	5	d	h	k
1	136.10	136.20	136.20	136.17	0.06	0.06	0.09	0.06
2	136.30	136.40	135.00	135.90	0.78	-0.21	-0.30	0.82
3	135.50	136.20	136.70	136.13	0.60	0.03	0.04	0.63
4	137.30	138.00	136.80	137.37	0.60	1.26	1.84	0.63
5	133.70	136.70	136.70	135.70	1.73	-0.41	-0.59	1.81
6	134.14	135.99	135.99	135.37	1.07	-0.73	-1.07	1.12
			X _{barbar}	136.11				
			s _{xbar}	0.6838				
			s _r	0.9558				
			(s _r)*	1.0376				

Table 2.10. ILS Worksheet for Dry Density (pcf)—Oklahoma.

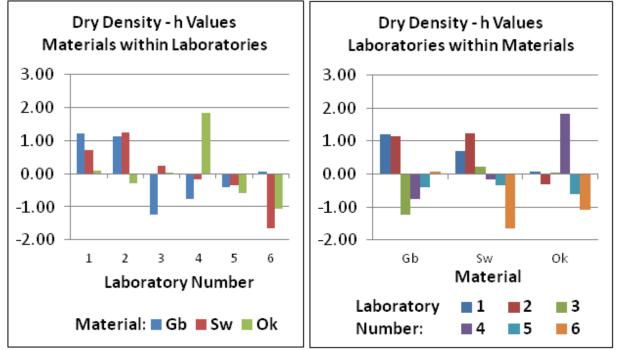


Figure 2.5. Between-Lab Consistency Statistics for Dry Density.

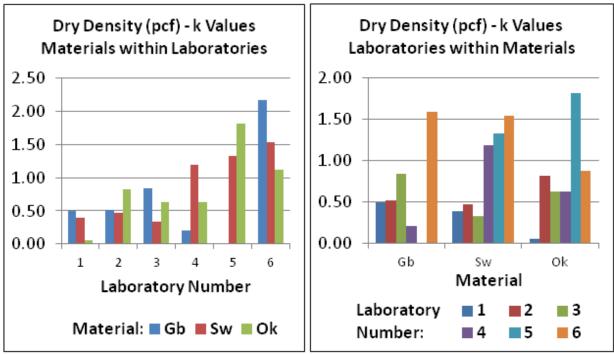


Figure 2.6. Within-Lab Consistency Statistics for Dry Density.

PRESENTATION OF PRECISION STATISTICS

Based upon the ILS worksheets in Tables 2.2–2.10, the precision statistics for total compaction energy, total compaction effort, and sample dry density are presented in Tables 2.11 through 2.13. The results suggest:

- Total compaction energy applied in Tex-113-E with the SCA exhibits excellent precision. The specification total compaction energy is 3000 ft-lbf. Both the repeatability and reproducibility limit are around 30 ft-lbf, or about 1 percent of the specification value.
- Total compaction effort exhibits good precision, with repeatability and reproducibility limits typically between 0.3 and 0.5 ft-lbf/in³, or approximately 5 percent of the specification value.
- Density should be repeatable within 2 to 3 pcf and reproducible within 3 to 4 pcf.

			rotar compa		(10 101) 111 1 01	
Material	X bar	S _{xbar}	Sr	S_R	r	R
Groesbeck	3024.8	6.30	10.39	10.57	29.10	29.58
Spicewood	3024.5	5.04	8.98	8.89	25.14	25.14
Oklahoma	3026.6	6.12	9.28	9.74	25.98	27.23

Table 2.11. Precision Statistics for Total Compaction Energy (ft-lbf) in Tex-113-E.

I dole Iti			total compac	cion Enoit (i	, 101/111) 111 I (
Material	X bar	S _{xbar}	Sr	S _R	r	R
Groesbeck	13.20	0.125	0.107	0.153	0.299	0.427
Spicewood	13.53	0.129	0.130	0.167	0.364	0.468
Oklahoma	13.38	0.223	0.154	0.256	0.431	0.716

Table 2.13. Precision Statistics for Sample Dry Density (pcf) after Tex-117-E Part II.

Material	X bar	S _{xbar}	Sr	S _R	r	R
Groesbeck	135.9	0.65	1.00	1.04	2.79	2.91
Spicewood	148.6	1.30	0.64	1.40	1.80	3.93
Oklahoma	136.1	0.68	0.96	1.04	2.68	2.90

While ASTM E 691 does not call for pooling data from different materials to determine globallyapplicable precision estimates, for purposes of provided a single numeric precision estimate to TxDOT the research team determined the pooled repeatibility and reproducibility standard deviations. These pooled standard deviations allow for estimating a single repeatibility and reproducibility limit as Table 2.14 presents.

Table 2.14. Trecision Estimates from Fooled Data.								
	Energy (ft-lbf)	Effort (ft-lbf/in ³)	Dry Density (pcf)					
Repeatability Limit	26.80	0.368	2.46					
Reproducibility Limit	27.32	0.552	3.29					

Table 2.14. Precision Estimates from Pooled Data.

CONCLUSIONS

The SCA addresses equipment variability during the sample fabrication process, and this interlaboratory study demonstrated that the SCA provides excellent precision in the application of compaction energy during that process. With the implementation of the SCA, TxDOT should generally expect the total compaction energy among samples to differ by no more than 27 ft-lbf. Additionally, the compacted dry density of samples constructed with Tex-113-E compaction should generally be repeatable within about 2.5 pcf and reproducible within about 3.3 pcf.

CHAPTER 3. CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS AND RECOMMENDATIONS ON MACHINE OPERATIONAL TOLERANCES

Many factors in the stages of sample fabrication, conditioning, and testing can impact the precision of strength results in Tex-117-E Part II. Since this test method is a specification requirement in Item 247, achieving the most homogenous compaction is in the best interest of producers, contractors, and the state. This project focused on homogenizing the application of compaction energy during the sample fabrication process. The impact of varying hammer weights and drop heights, while the Soil Compactor Analyzer controlled compaction to apply between 740 to 760 ft-lbf total energy per lift, was evaluated with a particular focus on:

- Moisture-density relationship.
- Molded specimen dry density when molded at Tex-113-E optimum.
- Specimen dielectric constant immediately after molding and after Tex-117-E Part II conditioning.
- Seismic modulus immediately after molding and after Tex-117-E Part II conditioning.
- Unconfined compressive strength after Tex-117-E Part II.
- Percent moisture after Tex-117-E Part II.

The results showed that while using the current TxDOT-approved SCA to control total energy per lift between 740 and 765 ft-lbf, the number of blows per lift may vary between 45 and 60 with no impact on important test results. TxDOT should require the prescribed amount of energy to be obtained within this number of blows per lift.

CONCLUSIONS AND RECOMMENDATIONS FROM INTERLABORATORY STUDY

As a final stage in this project, an interlaboratory study was conducted to develop precision statistics for total compaction energy, total compaction effort, and specimen dry density when molded at Tex-113-E optimum. These results showed that the SCA enables excellent precision of total compaction energy and good precision of total compaction effort. TxDOT should generally expect the total compaction energy among samples constructed with Tex-113-E to differ by no more than 27 ft-lbf and incorporate that precision information into the test procedure.

The dry density of replicate samples constructed at optimum water content within a single lab should generally not vary by more than 2 to 3 pcf, with 2.5 pcf representing the pooled repeatability limit. The dry density of replicate samples compacted at different labs should generally not vary by more than 3 to 4 pcf, with 3.3 pcf representing the pooled reproducibility limit. The precision statement for dry density should be added to the Tex-113-E test procedure.

APPENDIX A: TEST REPORT FROM FLEX BASE USED IN IMPACT HAMMER ADJUSTMENTS

Datasak Masterak

TEXAS DEPARTMENT OF TRANSPORTATION

ATTERBERG LIMITS Tex-104-E, Tex-105-E, Tex-106-E

Herrican Workson	828.					File Version: (08/17/09 11:35:1		
	SAMPLE ID:			SA	MPLED DATE:				
Т	EST NUMBER:				ETTING DATE:				
	MPLE STATUS:				ROLLING CSJ:	0458-03-015			
GRI		FREESTONE		00111	SPEC YEAR:		NATE OF COMPANY		
	SAMPLED BY:						S. R. Barry, N. & Share		
				005011	SPEC ITEM:	24/			
	LE LOCATION:	and the second sec		SPECIA	L PROVISION:				
	TERIAL CODE:			-	GRADE:	2 35555555555	영상 이 이 가지?		
MA	TERIAL NAME:				1 S				
	PRODUCER:	VULCAN							
ARE	EA ENGINEER:			PROJEC	T MANAGER:				
	COURSEVIETS	Land Contraction of C	STATION:		Die	ST. FROM CL:			
	COORSEVERT	1	the second se	And the second se	UR	ST. PHOM CL:			
			Liquid Limit	- Tex-104-E					
	Dish No.	Mass of Wet Sample + Tare (g)	Mass of Dry Sample + Tare (g)	Tare Mass (g)	Moisture Content (%)	Number of Blows	Liquid Limi (%)		
	1 -0.25-252-254.2	REAL PROPERTY.	The age of the state of the	1993/9 9 2 C C A		35.7363964.91			
		1 5 5 6							
		· · ·	Plastic Limit	- Tex-105-E		Liquid Limit			
	Dish No.	Mass of Wet Sample + Tare (g)		Tare Mass (g)	Mass of Water (g)	Plastic Limit (%)			
	1 101	34.13	31.94	16.65	2.19	14			
	1 101		51,84	10.03	<u>z.</u> 18.	14			
			22100031265808						
	3 212020729330	Studen Careford	ean real airte	140808-712033-712	Diam'r Llad				
					Plastic Limit	14			
			Plasticity Inde	ex - Tex-106-E		1 d. 1			
	Plasticity	Index Calcula	ted from Lines	ar Shrinkana:	*See Note	1			
					the second				
	Use Bar Lin	ear Shrinkage i	to Calculate Plu	asticity Index?	Yes				
		Test Tx1	07 Test Numb	er Reference:	10-074				
	See Test Tut07				anyon an announce	i Romala fair R	in all all a la allocat		
	See Test Tx107	Test NDr (10-0	(74) - Bar Linea	ir Shrinkage A	ssociated to thi	s sample for P	asticity index		
Remarks:									
25 722233	na here en an	Ligacij weden	出来的影响的思想	initiality in	ne kale v tredokisk p	aldenineekiya	sionsi nitabi		
영화와 파파관	NT NA 122203	20180-0332000	建造合的合同的现在	COMMENT OF COM	NEW CONTRACTOR		\$460 C		
Test Method:		Tested By:		Tested Date:					
TX104	000000000000000000000000000000000000000	A ALEXANDER DE A D	BUR STRONGSPORTS		1				
	TERRY GREE	N	a contraction of the second	03/18/10	i				
TX105	A REAL PROPERTY AND A REAL			03/18/10	1 .				
	TERMS AREA								
TX106	TERRY GREE	EN	and the second	the second s	1				
		EN	and the second	Completed Date:	Reviewed By:				
TX106 Test Stamp Cod	le: (prinska pri se decima		and the second	the second s	Reviewed By:				
TX106 Test Stamp Cod		District:	and the second	the second s	Reviewed By:				
TX106 Test Stamp Cod	le: (prinska pri se decima		Omit Test:	the second s	Reviewed By:				
TX105 TX106 Test Stamp Cod Locked By: Authorized By:	le: (prinska pri se decima		Omit Test:	the second s	Reviewed By:				

stockpile 01-10 FM80 Freestone Co.10-074 Tx117-2.xls 1 of 1

3/23/2010

TEXAS DEPARTMENT OF TRANSPORTATION

BAR LINEAR SHRINKAGE

TEX-107-E

Refresh Workbook	2	1EX-107-E	File Version: 08/26/09 22:36:38
SAMPLE ID:		SAMPLED DATE:	03/04/2010
TEST NUMBER:	10-074	LETTING DATE:	
SAMPLE STATUS:		CONTROLLING CSJ:	0456-03-015
COUNTY:	FREESTONE	SPEC YEAR:	2004
\$AMPLED BY:		SPEC ITEM:	247
SAMPLE LOCATION:	STKPL#01-10	SPECIAL PROVISION:	The second state of the second states of the second
MATERIAL CODE:		MIX TYPE / GRADE:	2
MATERIAL NAME:		-	the second s
PRODUCER:	VULCAN		
AREA ENGINEER:		PROJECT MANAGER:	
COURSE\LIFT:	STATI	ION:	DIST. FROM CL:

Bar Linear Shrinkage - Tex-107-E

Unit	Initial Length (percent)	Final Length (percent)	Linear Shrinkage	
percent	100	99	- 1.0	

1.6

Calculate Plasticity Index from Bar Linear Shrinkage? Yes

Plasticity Index Calculated from Linear Shrinkage:

Remarks:	
ROUNDS	UP TO A 2.0 PI
\$\$\$\$72564.5,Y4	

lest Method:		Tested B	r -	Tested Date:			
FX107	TERRY G	REEN	digi oʻr haqqat	03/18/10]		
est Stamp Code:			Omit Test:	Completed Date:	Reviewed By:	-	
ocked By:	TXDOT:	District:	Area:		1		

stockpile 01-10 FM80 Freestone Co.10-074 Tx117-3.xlsof 1

3/23/2010

TEXAS DEPARTMENT OF TRANSPORTATION

PARTICLE SIZE ANALYSIS Tex-110-E

Refresh Workbook	-	Tex-11	10-E		File Version: 10/06/09 11:04:06
SAMPLE ID:			SAN	(PLED DATE:	03/04/2010
TEST NUMBER:	10-074		LE	TTING DATE:	
SAMPLE STATUS:			CONTR	OLLING CSJ:	0456-03-015
COUNTY:	FREESTONE			SPEC YEAR:	2004
SAMPLED BY:	BA			SPEC ITEM:	247
SAMPLE LOCATION:	STKPL#01-10		SPECIAL	PROVISION:	사람은 것 같아요? 속날 것 요가 가가지?
MATERIAL CODE:				GRADE:	2.5.0.000000000000000000000000000000000
MATERIAL NAME:			1. S.		
PRÓDUĆER:	VULCAN				
AREA ENGINEER:			PROJEC	T MANAGER:	
COURSEVLIFT:	21-22-2	STATION:		DIS	ST. FROM CL:

Particle Size Analysis - Tex-110-E

Sieve Size	Cumulative Weight Retained (g) (g)	Individual Weight Retained	Cumulative Percent Retained	Lower Spec Limit %	Upper Spec Limit %	Within Master Grading
2-1/2	(1111) 0 11111	0	0.0	D	0	Yes
1-3/4"	0.000	0	0.0	D	10	Yes
No. 4	3233.8	3233.8	64.7	45	75	Yes
No. 40	3780.8	547	75.6	- 60	. 85 .	Yes

Remarks:

Test Method:		Tested B	y:	Tested Date:	_		
TX110	TERRY G	REEN NEWS	ene establista	03/16/10]		
Test Stamp Co	ode: -		Omit Test:	Completed Date:	Reviewed By:		
808-13-53-53-53-53-53-53-53-53-53-53-53-53-53	and a constraint of the second	aladan selementan		- 家族特别考虑的		1 A A	
Locked By:	TxDOT:	District:	. Area:				
Authorized By:			Authorized Date				

stockpie 01-10 FM80 Freestone Co.10-074 Tx117-4.xls for Tex-110-E Flexbese 1 of 1

3/23/2010

APPENDIX B: RESULTS FROM SPECIMENS TESTED FOR IMPACT HAMMER ADJUSTMENTS

							113-E	Molsture-	Density Sa	amples							
		Sample ID		Gro	up 4			Gro	ıр 5			Gro	up 6		Test samp	oles at 113-E	Optimu
		Sample ID	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3
		Hammer Weight	10.089	10.089	10.089	10.089	10.089	10.089	10.089	10.089	10.089	10.089	10.089	10.089	10.31	10.31	10.3
		AVG drop ht (in)	15.28	15.03	16.25	16.88		16.69	14.84	15.92	14.21	16.37	15.45	16.23	16.48	17.32	17.4
	Lift 1	# draps	60	60	61	61	60*	61	62	62	65	62	62	64	.58	59	60
		Total Energy (ft-lbf)	746.63	750.35	742.85	744.74		745.95	750.5	748.7	749.01	747.85	751.34	751.1	751.41	759.32	756.
		AVG drop ht (in)		15.63	16.07	16.1	16.91	15.23		14.86	16.31	16.17	16.56	16.72	17.35	17.49	16.
	Lift 2	# drops	65*	62	61	61	60	63	60*	57	64	57	62	61	58	58	60
		Total Energy (ft-lbf)		749.7	749.93	752.97	745.66	756.18		750.07	751.81	747.76	754.87	747.25	757.39	750.8	757.
		AVG drop ht (in)	16.74	14.45	14.05	14.22	16.38	16.22	16.37	16.76	16.67		14.65	15.95	17.3	17.49	17.
_	Litt 3	# drops	61	61	62	54	60	62	60	63	63	65*	63	62	58	58	58
Molding Data		Total Energy (ft-lbf)	745.1	743.3	752.81	748.58	745.75	754.72	746.41	761.82	743.06		751.54	751.19	754.76	762.43	757.
5		AVG drop ht (in)	15.15	16.25	16.6	14.07	16.15	16.67	16.99	17.17	15.39		14.79		17.5	17.49	16.
Ē	Lift 4	# drops	61	60	60	64	61	58	61	61	63	65*	62	60*	58	58	58
ŝ		Total Energy (ft-lbf)	743.8	743.58	744.97	748.91	747.69	750.49	753.91	750.8	748.17		750.92		753.41	761.36	752.
1	Total Ene	rgy Measured (ft-lbf)	2235.53	2986.93	2990.56	2995.2	2239.1	3007.34	2250.82	3011.39	2992.05	1495.61	3008.67	2249.54	3016.97	3033.91	3024
	Sample H	It (in)	8.2	8	8	8	8.4	8.1	8	8	8	8.1	7.9	7.8	7.9	8.05	8
	Sample V	/olume (ft^3)	0.134172	0.1309	0.1309	0.1309	0.137445	0.132536	0.1309	0.1309	0.1309	0.132536	0.129263	0.127627	0.1292634	0.1317178	0.130
	Effort Me	easured [(ft-lbf/ft^3)]	16661.65	22818.46	22846.2	22881.64	16290.92	22690.75	17195	23005.32	22857.58	11284.56	23275.49	17625.87	23339.699	23033.406	23107
	Malded v	vater content (%)	5	6	7	8	5	6	7	8	5	6	7	8	6.9	6.9	6.
	Sample d	lry density (pcf)	133.2	137.1	137.1	137.26	130.93	135.02	137.17	136.8	135.22	135.85	139.2	137.17	139.21	136.7	137
	Max dry o	density (pcf)		13	7.6			13	7.1			13	38		N	lot Applicab	ole
	Optimum	water Content (%)		6	.8			7.	1			6	.8		N	iot Applicab	ole
		Reading 1	12.2	17.1	16.3	17	13	16.3	18.9	21.9	13.9	17.2	17.9	18.1	19.2	18.8	16
Н		Reading 2	12.9	16.7	17.5	19.6	15.1	16.3	17	16.7	13.7	14	18.2	19.7	18.9	17.6	16
ctric a		Reading 3	13.6	15.6	19.1	20.9	14.7	14	19.9	18.5	13.9	12.7	17.7	19.5	17.9	17.4	17.
Dielectric at Molding		Reading 4	13	16.6	17.9	21.2	14.7	17.2	19	20	12	16.9	18.6	17.2	18.4	19.2	16
ă		Reading 5	14.1	15.8	17.1	22	14.7	17.7	17.1	19.2	11.8	14.7	19.2	17.3	19.9	17.4	17.
	AVG Diel	ectric at Molding	13.16	16.36	17.58	20.14	14.44	16.3	18.38	19.26	13.06	15.1	18.32	18.36	18.86	18.08	16.
<u>ن</u> ۲		Reading 1	9	26.7	22.6	9.2	53.1	47.3	9.2	15.2	14.7	22.4	9.2	9	9.3	15	22.
di C		Reading 2	24.2	22.4	13.5	10.6	38.7	31.2	7.9	7.9	10.2	22.4	7.9	5.5	8	15	16.
Seismic E at Molding		Reading 3	19.5	17.3	11.9	10.1	32.7	36.2	7.5	10.1	8.9	28.2	6.7	7.4	9.3	14	16.
s e	AVG Seis	mic E at Molding	17.56667	22.13333	16	9.966667	41.5	38.23333	8.2	11.06667	11.26667	24.33333	7.933333	7.3	8.8666667	14.666667	18.63
	Water co	ntent (%) after conditioning	4.73	5.82	6.59	7.48	4.67	5.78	6.7	7.56	4.72	5.69	6.65	7.5	6.6	6.61	6.6
es		Reading 1	12.4	15.6	17.4	16.7	13.1	15.5	18.4	15.1	12.7	16.4	18.1	17.4	18	17	16
Dielectric Values		Reading 2	11.2	15.5	14	16.8	11.4	16	17.5	14.6	11.3	12.5	16.2	18.5	17.3	18.6	16.
> 2		Reading 3	11.9	15	15.5	19.7	9.8	13	17.2	18.4	12.2	13.2	16.4	18.5	18.1	16.1	15.
Ŧ		Reading 4	12.4	1.5.9	16.5	16.6	13.8	16.7	18.3	16.9	11.9	13.9	19.9	13.8	18.8	16.7	17.
		Reading 5	12.7	14.3	16.4	17.9	13.3	17.8	17.7	19.9	11.6	15	17.5	17	18.6	15.2	16.
	ΛVG Diel	ectric after conditioning	12.12	15.26	15.96	17.54	12.28	15.8	17.82	16.98	11.94	14.2	17.62	17.04	18.16	16.72	16.
San		Reading 1	59.2	47.4	60.5	9.2	41.5	47.3	15.1	22.7	18.1	67	36.7	26.4	26.9	31.2	41.
E Values		Reading 2	38.4	36.3	42	29.4	36.1	44.4	15.1	20.7	18.1	53.6	24.8	16.6	24.7	31.2	39.
SeismicE		Reading 3	41.1	36.3	36.5	21.4	36.1	43.4	16.3	17.6	18.1	51.5	21.3	18.4	24	45.4	38
Sels	AVG Seis	mic E after conditioning	46.23333	40	46.33333	20	37.9	45.03333	15.5	20.33333	18.1	57.36667	27.6	20.46667	25.2	35.933333	39.
~		ed Compressive Strength (psi)	42.4	56.4	51.1	35.1	55.3	55.1	44.0	24.8	44.4	83.8	55.9	26.6	42.6	61.4	46.
	2	an annihireasine seren@en (bai)	nen.	5.82	6.59	7.48	4.67	5.78	6.7	7.56	4.72	5.69	6.65	7.5	6.6	6.61	6.6

 Table B.1. Results from Samples Targeting 12.5 ft-lbf per Blow.

							113-E	Moisture-	Density Sa	mples							
				Gro	up 1				up 2			Gro	up 3		Test same	oles at 113-E	Optimum
		Sample ID	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3
		Hammer Weight	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041
		AVG drop ht (in)	17.83	17.05	16.96	17.57	18.41		17.79	17.8	18.41	18.41	18.41	17.49	18.23	18.22	18.24
	Lift 1	# drops	58	52	53	54	49	55*	50	50	50	50	50	50	52	52	52
		Total Energy (ft-lbf)	746.66	744.36	749.77	746.09	745.1		753.95	742.51	755.72	753.37	750.39	757.81	758.53	752.24	759.26
		AVG drop ht (in)	17.49	17.55	17.6		18.16		17.37	18.4		17.79	18.17	17.27	18.23	18.23	18.22
	Lift 2	# drops	56	48	49	60*	49		50	50	50*	50	50	50	52	52	52
		Total Energy (ft-lbf)	748.19	750.8	751.38		744		750.21	747.13		743.68	755.01	750.49	764.72	750.61	758.71
		AVG drop ht (in)	17.79	18.3	17.83	18.31	18.39		18.16	17.98	17.38	17.84	18.39	17.21	18.22	18.22	18.22
	Lift 3	# drops	55	50	56	64	49		50	50	52	51	50	50	52	52	52
E E		Total Energy (ft lbf)	744.31	748.01	753.05	752.3	747.32		752.18	744.99	756.73	756.88	751.74	743.69	760.68	757.89	752.5
Molding Data		AVG drop ht (in)	17.51	18.31	18.35	18.33	17.66		17.96	17.5	18.42	17.47		17.83	18.22	18.23	18.21
÷	Lift 4	#drops	55	51	54	58	50		50	50	50	50	55*	51	52	52	52
2		Total Energy (ft-lbf)	749.03	749.11	751.75	750.93	749.47		752.08	743.75	744.71	748.7		754.47	755.15	755.7	761.66
	Total Ene	rgy Measured (ft-lbf)	2988.19	2992.28	3005.95	2249.32	2985.89	0	3008.42	2978.38	2257.16	3002.63	2257.14	3006.46	3039.08	3016.44	3032.13
	Sample H		7.9	7.8	7.8	7.6	7.6	7.8	8	8.2	8	8	7.8	7.9	8	8	7,9
_		olume (ft^3)	0.129263				0.124355		0.1309	0.134172	0.1309	0.1309	0.127627	0.129263	0.1308997	0.1308997	_
		asured [(ft-lbf/ft^3)]	23117.05	23445.47		18087.94	24011.07	0	22982.64	22198.19		22938.4	17685.41	23258.39	23216.861	23043.904	
		vater content (%)	5	6	7	8	5	6	7	8	5	6	7	8	6.9	6.9	6.9
		ry density (pcf)	132.64	136.91	138.93	138.34	131.93	134.99	136./1	135.78	130.82	134.58	138.24	135.21	137.38	137.38	137.81
		density (pcf)		13					6.4			1				lot Applicab	
		Water Content (%)							.8			6				lot Applicab	
		Reading 1	13	17.9	19.2	21	16	17.5	12.6	14.1	15.6	15.1	15.8	6.5	16,4	17.5	18.3
Ħ		Reading 2	13.2	12.7	19.7	20	19	18.3	12.7	12.9	20.4	17.3	15.7	9.9	16.2	19	16.8
electric at Molding		Reading 3	13.8	11.1	19.3	20.4	18.5	17.9	16.1	12.9	19.7	15.2	17.1	9.6	19.2	19	18.9
- <u>-</u>		Reading 4	12.3	16.9	19	21.4	18.2	16.8	15	13	18.7	158	15.7	12.1	16.7	16.5	19.9
Ξ		Reading 5	12.5	14.2	20.2	20.1	17.6	17.2	14.6	12.2	19.2	14.9	13.3	9.5	17.7	17.5	18
	AVG Diel	ectric at Molding	12.96	14.56	19.48	20.58	17.86	17.54	14.2	13.02	18.72	44.1	15.52	9.52	17.24	17.9	18.38
₩		Reading 1	91	30.9	30.4	6.1	4.2	21.5	15.1	4.8	45.1	26.2	9	6.6	6.7	22.6	11.9
Seismic E at Molding		Reading 2	96	31.7	24.4	7.2	8.2	19.6	16.8	3.9	32.1	24	10.3	7.8	12	16.9	13.4
돌림		Reading 3	88.3	32.5	25.8	7.1	6.7	20.3	16.2	4.2	31.3	23.4	9.9	7.4	11	16.3	10.9
_ ∰ Σ	AVG Serie	mic E at Molding	91.76667	31.7	26.86667	6.8	6.366667	20.46667	16.03333	4.3	36.16667	24.53333	9.733333	7.266667	9.9	18.6	12.06666
		ntent (%) after conditioning	4.37	5.71	6.66	7.63	4.72	5.84	6.6	7.53	5.49	5.76	6.52	7.86	6.66	6.67	6.6
10		Reading 1	12.3	14.2	17.7	20	12.7	14.7	16	17	13.7	13.3	15.3	15.1	16	17.1	18.2
n n		Reading 2	11.5	16	16.7	17.5	6.3	15.5	17.3	17.2	12.5	13.8	17.3	18	16.8	16.9	14.4
S S		Reading 3	11.1	11.4	18.3	15.9	9.2	15.9	15	21	11.8	15.5	16.8	17.5	17.2	17.9	1/.2
Ť		Reading 4	11.7	9.2	16.7	16.3	9.7	14.7	14.9	17.5	13.5	13.8	16.2	18	14	15.4	18
Dielectric Values		Reading 5	12	10.9	16.9	16.6	9.7	11.3	12	17.5	12.7	14.4	16.7	17.5	17	16.8	16.9
ă	AVG Diel	ectric after conditioning	11.72	12.34	17.26	17.26	9.52	14.42	15.04	18.04	12.84	14.16	16.46	17.22	16.2	16.82	16.94
5		Reading 1															
E.		_	49	42.8	61.2	14.3	6	40	41.9			52.5	35.9	14.9	36.7	36.7	22.4
CE V		Reading 2	47	47.5	59	16	9.4	40	41.9	19.1	34.6	49.5	26.4	13.3	31.6	39.4	31.3
Seismic E Values		Reading 3	45.8	49.2	55.3	18.1	10.7	36.6	34.8	16.7	41.5	48.5	31	13.8	30	40.3	29.7
Sei	AVG Seis	mic E after conditioning	47.26667	46.5	58.5	16.13333	8.7	38.86667	39.53333	17.1	36.9	50.16667	31.1	14	32.766667	38.8	27.8
	Unconfin	ed Compressive Strength (psi)	60.0	56.7	39.4	31.0	24.8	41.3	43.5	26.0	55.4	57.9	47.3	28.9	50.8	46.5	56.0
	oncontin		00.0	0.011	0.511	0110	2110			2010							

 Table B.2. Results from Samples Targeting 15 ft-lbf per Blow.

							113-E	Moisture-	Density Sa	mples								
		Committee UD		Gra	αφ 7			Gro	ups			Gro	up 9		Test samp	les at 113-6	Optimum	
		Sample ID	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	
		Hammer Weight	12.20675	12.20675	12.20675	12.20675	12.20675	12.20675	12.20675	12.20675	12.20675	12.20675	12.20675	12.20675	12.20675	12.20675	12.20675	
		AVG drop ht (in)	18.73	18.72	18.69	18.73	18.7	18.72	18.71	18.73	18.75	18.72	18.68	18.75	18.77	18.76	18.76	
	Lift 1	# drops	44	45	45	45	45	45	45	46	46	45	45	46	45	45	45	
		Total Energy (ft-lbf)	751.54	762	760.84	754.61	753.67	761.05	757.27	765.63	765.25	753.36	765.71	766.23	765.37	762.78	760.97	
		AVG drop ht (in)	18.73	18.7	18.53	18.73	18.67	18.5	18.74	18.69	18.71	18.72	18.52	18.74	18.05	18.51	18.74	
	Lift 2	# drops	45	45	44	45	45	45	45	45	45	45	45	45	37	45	45	
		Total Energy (ft-lbf)	767.12	761.93	751.13	755.39	756.86	752.79	766.18	759.5	755.51	757.46	762.09	758	763.69	754.59	761.99	
		AVG drop ht (in)	18.05	18.34	18.72	18.72	18.36	18.7	18.73	18.68	18.73	18.71	18.69	18.75	18.75	18.32	18.73	
	Lift 3	# drops	45	46	45	45	46	46	45	45	45	46	45	46	46	45	46	
Cata		Total Energy (ft 1bf)	751.72	770.15	758.1	752.97	764.08	764.16	752.81	755.23	751.36	763.37	751.52	755.54	755.17	750.2	763.7	
		AVG drop ht (in)	18.74	18.69	18.71	18.72	18.06	18.68	18.66	18.49	18.72	18.75	18.69	18.74	18.75	18.69	18.75	
Molding	lift 4	# drops	45	45	45	46	44	46	45	45	45	46	46	46	45	46	45	
2		Total Energy (ft-lbf)	760.94	759.22	756.57	763.77	753.32	765.49	750.38	765.6	753.84	763.37	764.85	756.46	766.36	762.07	757.43	
-	Total En	ergy Measured (ft-lbf)	3031.32	3053.3	3026.64	3026.74	3027.93	3043.49	3026.64	3045.96	3025.96	3037.56	3044.17	3036.23	3050.59	3029.64	3044.09	
	Sample		8.25	8.1	8,05	8.1	8.1	8.1	8,05	7.95	8,25	8.2	8.05	8	8.1	8	7.9	
		Volume (ft^3)	0.13499	0.132536	0.131718						0.13499	0.134172		0.1309	0.1325359	0.1308997		
		easured [(ft-lbf/ft^3)]	22455.83		22978.21	22837.13	22846.1	22963.51	22978.21	23415.77	22416.13	22639.27	23111.3	23195.09	23017.077	23144.745		
		water content (%)	5	6	7	8	5	6	7	8	5	6	7	8	6,8	6.8	6,8	
		dry density (ocf)	133.21	135.43	137.08	134.62	134.49	135.69	136.92	136.01	132.08	135.28	136.52	136.06	136.09	136.37	137.63	
		density (pcf)			6.5				6.5				6.3			lot Applicab		
		n Water Content (%)			.6				.8				.9			Not Applicable		
		Reading 1								18.4				17.4	16.8	17.9	18.8	
*		Reading 2								19.6				20.9	14.6	18	18.5	
Ë F		Reading 3								20.7				22.9	18.1	16.7	17.7	
Dielectric at Molding		Reading 4		0	No percom	eter availa	ble 9/16/1	0		21.2	No per	cometer a	vailable	21.9	17.3	18.5	19.8	
je ≥		Reading 5								22.7				21.5	16	16.3	19.0	
-	AV/C Dia	electric at Molding								20.52				20.775	16.56	17.48	18.7	
y		Reading 1	36.1	36.4	15.2	6.8	14.8	47.6	15.2	6.8	46.8	15	12	6.8	18.7	9.1	22.2	
eismic E at Molding)	Reading 2	28.8	36.4	13.2	5.7	14.8	47.6	9.2	0.8 7.9	40.8	11.9	6.8	15.2	18.7	10.4	13.3	
Seismic I Moldin		<u> </u>	28	38.2	13.5	4.7	11.7	34.7	9.2	8.3	43.9	11.9	6.8	15.2	15.2	10.4	13.3	
- S S	41/0 0-1	Reading 3	30.96667	37	14.1	4.7	12.26667	42.33333	11.2	0.5 7.666667	40.8	12.93333		11	17.533333	11.866667		
S S		smic E at Molding	5			7.78	12.20007		6.98					7.27	6.48			
	water co	ontent (%) after conditioning	12.8	6.01	6.88 18.3	20.2	5 12.8	5.93	0.98	7.35	.5.01	6.04 15.6	6.85	15.8	0.48	6.38 17.7	6.45 18	
Values		Reading 1		14.3				14.2			13		17.8					
Za I		Reading 2	13.3	13.6	16.8	17.9	12.1	12.5	13	20.1	13	13.5	14.2	18.8	16.6	16.8	18.1	
-2		Reading 3	11.9	14.4	1/	19.1	12	12.1	16.9	19.1	13.3	12.9	12.9	1/.4	14.9	16	1/.6	
Dielectric		Reading 4	10.9	13.5	15.1	18.4	11.6	11.3	13.3	17.5	11.5	12.3	13.5	20.1	13.5	15.9	16.7	
E I		Reading 5	12.3	14.6	16.7	18.3	11.6	13.5	17.3	20	12.9	14.6	16.9	19	16.5	16	17.1	
	AVG Die	lectric after conditioning	12.24	14.08	16.78	18.78	12.02	12.72	15.28	19.32	12.74	13.78	15.06	18.22	15.68	16.48	17.5	
Values		Reading 1	0	46.9	\$3.3	17.3	e °	48.9	36.4	18.8	12 2 12 -	26	49.6	22.7	33.5	26.4	36.4	
5		Reading 2	ass t	46.9	34.5	15.5	ess t	48.9	36.4	24.8	apärt ing -n	26	49.6	31.7	34.5	26.4	50,4	
1 M		Reading 3	skip due to åryness				dp due t: cryness				carre apa weighing test							
Seismic		1 9	- 	47.9	30.7	13.5	en se	49.9	43	25.5	carrea Weighi te	26	55.1	30.1	34.5	25	55.8	
8	AVG Sei:	smic E after conditioning		47.23333	39.5	15.43333		49.23333	38.6	23.03333	03	26	51.43333	28.16667	34.166667	25.933333	47.53333	
	Unconfi	ned Compressive Strength (psi)	32.3	77.5	48.7	37.7	65.9	81.6	49.6	26.8	38.5	41.5	46.4	26.4	40.9	58.9	53.7	
	Matorice	ontent (%) after compression test	5	6.01	6.88	7.78	5	5.93	6.98	7.35	5.01	6.04	6.85	7.27	6.48	6.38	6.45	

Table B.3. Results from Samples Targeting 16.7 ft-lbf per Blow.

APPENDIX C: INDIVIDUAL LAB RESULTS FROM ILS

			Triaxial	Test Data S		v			
Specimen Data			Пала	loor Data e					
Specimen Number:	GB-1	GB-2	GB-3	SW-1	SW-2	SW-3	OK-1	OK-2	OK-3
Cell No.:									
Wet Mass Spec. & Mold, (lb):(38.649	38.505	No Sample	39.638	39.637	39.638	38,390	38.960	38,161
Wet Mass Specimen, (lb):	19.361	19.218		20.351	20.350	20.351	19.102	19.672	18.874
Initial Height of Specimen, in :	8.056	8.029		7.890	7.871	7.899	7.976	8.211	7.865
New Height of Specimen, in .:	8.000	8.000		8.000	8.000	8.000	8.000	8.000	8.000
Average Diameter, in.:	6.00	6.00		6.00	6.00	6.00	6.00	6.00	6.00
Circumference, in. (manual):	19,100	19,100		19.000	19.000	19.000	18,900	18,900	18,900
Circumference, in. (auto):	19.100	19,100		19.000	19.000	19.000	18.900	18.900	18.900
Area, in.^2:	28.65	28.65		28.50	28.50	28.50	28.35	28.35	28.35
Avg. Cross Sectional Area, in^2:	29.84	29.56		29.35	29.44	29.62	28.99	29.01	28.81
			1 1						
Dry-Back Data									
Wet Mass of Pan & Specimen, (lb)	22.271	22.401	I I	23.482	23.519	23.453	22.161	22.787	23.007
Dry Mass of Pan & Specimen, (lb):	21.031	21.138		22.485	22.494	22.436	20.875	21.466	21.644
Mass of Pan, (lb):	3.210	3.239		3.210	3.239	3.231	3.210	3.239	3.231
Dry Mass of Material, (lb):	17.821	17.899		19.275	19.255	19.205	17.665	18.227	18.413
Mass of Water, (lb):	1.240	1.263		0.997	1.025	1.017	1.286	1.321	1.363
Moisture Content, (%):	7.0	7.1		5.2	5.3	5.3	7.3	7.2	7.4
Wet Density, (pcf).:	146.5	145.9		157.3	157.6	157.1	146.0	146.1	146.3
Dry Density, (pcf):	137.0	136.3		149.5	149.7	149.2	136.1	136.2	136.2
SCA Data									
Total Energy (Ib-ft) Lift 1:	759.620	759.710		758.000	755.000	760.760	757.170	754.610	750.470
Total Energy (Ib-ft) Lift 2:	759.640	752.220		759.560	751.690	763.130	753.000	753.450	750.600
Total Energy (Ib-ft) Lift 3:	751.140	758.860		757.430	762.460	761.400	761.670	752.910	759.470
Total Energy (Ib-ft) Lift 4:	752 760	761 650		753 220	750 010	760 340	755 120	759 170	751 260
Energy/Lift (Ib-ft) Lift 1:	13.330	12.880		12.850	13.260	13.350	13.050	13.240	12.940
Energy/Lift (Ib-ft) Lift 2:	13.330	12.970		13.330	13.670	13.390	12.980	12.150	12.720
Energy/Lift (Ib-ft) Lift 3:	13.180	13.080		13.530	13.620	13.840	13.360	12.980	12.870
Energy/Lift (lb-ft) Lift 4:	13.210	13.360		13.450	13.640	13.580	13.360	12.650	12.520
Avg. Drop Ht. (Ib-ft) Lift 1:	18.300	15.990		18.470	18.480	18.400	17.180	17.810	16.520
Avg. Drop Ht. (Ib-ft) Lift 2:	17.550	18.290		18.490	18.490	18.400	18.010	17.120	17.370
Avg. Drop Ht. (Ib-ft) Lift 3:	17.960	18.000		18.490	18.500	17.420	17.960	18.470	18.040
Avg. Drop Ht. (Ib-ft) Lift 4:	17.260	18.490		18.490	18.490	17.970	17.050	17.660	17.050
No. of Blows (Ib-ft) Lift 1:	57.000	59.000		59.000	57.000	57.000	58.000	57.000	58.000
No. of Blows (Ib-ft) Lift 2:	57.000	58.000		57.000	55.000	57.000	58.000	62.000	59.000
No. of Blows (Ib-ft) Lift 3:	57.000	58.000		56.000	56.000	55.000	57.000	58.000	59.000
No. of Blows (Ib-ft) Lift 4:	57.000	57.000		56.000	55. 000	56.000	59.000	000.00	60.000

Table C.1. ILS Results from Laboratory 1.

Triaxial Test Data Sheet									
Specimen Data									
Specimen Data Specimen Number:	GB-1	GB-2	GB-3	OK-1	OK-2	OK-3	SW-1	SW-2	SW-3
Cell No.:	57	60	72	94	103	105	34	36	56
Wet Mass Spec. & Mold, (lb):	37.840	37.874	37.880	37.553	37.548	37.330	38.646	39.213	38.745
Wet Mass Spec. & Mold, (b): Wet Mass Specimen, (b):	19.454	19,488	19.494	19.167	19.162	18.944	20.260	20.827	20.359
Initial Height of Specimen, in.:	8.105	8.127	8.168	7.940	7.933	7.925	7.793	7.999	7.847
New Height of Specimen, in.:	8.105	8.127	8.198	7.940	7.933	7.925	7.793	7.999	7.847
Average Diameter, in.:	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Circumference, in. (manual):	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Circumference, in. (manual).	18.850	40.050	40.050	40.050	40.050	40.050	40.050	40.050	10.050
	28.27	18.850 28.27	18.850 28.27	18.850 28.27	18.850 28.27	18.850 28.27	18.850 28.27	18.850 28.27	18.850 28.27
Area, in.42:	28.27	28.27	28.27			28.27			
Avg. Cross Sectional Area, in ² :	28.99	28.90	29.00	28.72	28.81	28.64	28.87	28.96	29.09
Dry-Back Data									
Wet Mass of Pan & Specimen, (lb)	24.424	24.031	22.891	25.662	25.560	25.623	26.373	26.815	25.404
Dry Mass of Pan & Specimen, (lb):	23.297	22.936	21.749	24.328	24.231	24.287	25.415	25.851	24.454
Mass of Pan, (Ib):	5.285	5.143	3.762	6.188	6.054	6.106	6.107	6.066	5.087
Dry Mass of Material, (lb):	18.012	17.794	17.987	18.140	18.177	18.182	19.308	19.785	19.368
Mass of Water, (lb):	1.127	1.095	1.143	1.334	1.330	1.336	0.959	0.964	0.950
Moisture Content, (%):	6.3	6.2	6.4	7.4	7.3	7.3	5.0	4.9	4.9
Wet Density, (pcf).:	145.5	145.3	144.6	146.3	146.4	144.9	157.6	157.8	157.2
Dry Density, (pcf):	136.9	136.9	136.0	136.3	136.4	135.0	150.1	150.5	149.9
ory conony, gray.	100.0	100.0	100.0	100.0				100.0	
SCA Data									
Total Energy (lb-ft) Lift 1:	753.520	758.040	753.130	759.620	761.420	761.750	760.070	761.310	750.620
Total Energy (lb-ft) Lift 2:	750.540	758.930	761.340	752.770	757.180	751.160	757.690	756.300	758.760
Total Energy (lb-ft) Lift 3:	762.010	762.700	7 50 .430	759.540	756.960	759.760	754.020	760.590	752.050
Total Energy (lb-ft) Lift 4:	751.360	754.600	7 50 .460	762.780	762.440	758.000	753.580	753.860	755.060
Energy/Lift (lb-ft) Lift 1:	13.220	13.300	13.210	13.100	13.130	13.130	13.570	13.130	13.170
Energy/Lift (lb-ft) Lift 2:	13.170	13.080	13.130	12.950	13.050	12.950	13.060	13.040	13.080
Energy/Lift (lb-ft) Lift 3:	13.140	13.150	13.170	13.100	13.050	13.100	13.000	13.110	13.190
Energy/Lift (lb-ft) Lift 4:	13.180	13.240	13.170	13.150	13.150	13.070	13.220	13.230	13.250
Avg. Drop Ht. (lb-ft) Lift 1:	18.400	18.380	18.390	18.380	18.360	18.330	18.380	18.410	18.390
Avg. Drop Ht. (lb-ft) Lift 2:	18.400	18.410	18.380	18.390	18.390	18.310	18.360	18.380	18.360
Avg. Drop Ht. (lb-ft) Lift 3:	18.390	18.370	18.390	18.370	18.380	18.390	18.340	18.360	18.360
Avg. Drop Ht. (lb-ft) Lift 4:	18.390	18.400	18.400	18.400	18.390	18.380	18.390	18.380	18.390
No. of Blows (lb-ft) Lift 1:	57.000	57.000	57.000	58.000	58.000	58.000	56.000	58.000	57.000
No. of Blows (lb-ft) Lift 2:	57.000	58.000	58.000	58.000	58.000	58.000	58.000	58.000	58.000
No. of Blows (lb-ft) Lift 3:	58.000	58.000	57.000	58.000	58.000	58.000	58.000	58.000	57.000
No. of Blows (lb-ft) Lift 4:	57.000	57.000	57.000	58.000	58.000	58.000	57.000	57.000	57.000

Table C.2. ILS Results from Laboratory 2.

Triaxial Test Data Sheet										
Specimen Data	Specimen Data									
Specimen Number:	1	2	3	4	5	6	7	8	9	
Cell No.:	G-1	G-2	G-3	0-5	0-6	0-7	S-A	S-B	-	
Wet Mass Spec. & Mold, (lb):	38.866	38.756	38.776	38.514	38.664	38.667	39.776	39.738		
Wet Mass Specimen, (lb):	19.549	19.439	19.459	19.197	19.347	19.350	20.459	20.421		
Initial Height of Specimen, in.:	8.235	8.202	8.291	8.096	8.120	8.094	7.969	7.973		
New Height of Specimen, in.:	8.235	8.202	8.291	8.096	8.120	8.094	7.969	7.973		
Average Diameter, in.:	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00		
Circumference, in. (manual):										
Circumference, in. (auto):	18.850	18.850	18.850	18,850	18.850	18.850	18.850	18.850	18,850	
Area, in.^2:	28.27	28.27	28.27	28.27	28.27	28.27	28.27	28.27		
Avg. Cross Sectional Area, in^2:	28.96	28.99	28.78	28.78	28.69	29.05	28.84	28.72		
Dry-Back Data										
Wet Mass of Pan & Specimen, (lb)	25.650	25.222	25.543	24.474	25.445	24.999	25.349	26.396		
Dry Mass of Pan & Specimen, (lb):	24.421	24.011	24.321	23.278	24.247	23.807	24.371	25.427		
Mass of Pan, (lb):	6.141	5.833	6.116	5.409	6.246	5.793	4.939	6.031		
Dry Mass of Material, (Ib):	18.280	18.178	18.205	17.869	18.001	18.014	19.432	19.396		
Mass of Water, (lb):	1.229	1.211	1.222	1.196	1.198	1.192	0.978	0.969		
Moisture Content, (%):	6.7	6.7	6.7	6.7	6.7	6.6	5.0	5.0		
Wet Density, (pcf).:	144.7	144.5	143.1	144.6	145.3	145.8	158.5	156.2		
Dry Density, (pcf):	135.6	135.5	134.1	135.5	136.2	136.7	149.0	148.7		
SCA Data										
Total Energy (Ib-ft) Lift 1:	751.500	763.990	761.530	759.200	757.720	760.230	762.18 0	759.710		
Total Energy (lb-ft) Lift 2:	760.510	750.180	761.340	758.000	762.650	758.990	764.060	757.220		
Total Energy (lb-ft) Lift 3:	758.790	761.270	760.340	760.150	761.030	759.100	754.840	753.520		
Total Energy (lb-ft) Lift 4:	760.480	756.170	753.840	751.890	757.060	752.990	752.770	752.060		
Energy/Lift (lb-ft) Lift 1:	14.180	14.150	14.100	14.060	14.030	14.080	13.860	14.070		
Energy/Lift (lb-ft) Lift 2:	18.080	14.150	14.100	14.040	14.120	14.060	13.890	14.020		
Energy/Lift (lb-ft) Lift 3:	18.050	14.100	14.080	14.080	14.090	14.060	13.980	13.950		
Energy/Lift (lb-ft) Lift 4:	18.080	14.000	13.960	13.920	14.020	13.940	13.940	13.930		
Avg. Drop Ht. (lb-ft) Lift 1:	18.530	18.530	18.510	18.520	18.540	18.530	18.490	18.530		
Avg. Drop Ht. (lb-ft) Lift 2:	18.520	18.510	18.520	18.510	18.540	18.540	18.490	18.510		
Avg. Drop Ht. (lb-ft) Lift 3:	18.520	18.520	18.520	18.520	18.530	18.530	18.510	18.51 0		
Avg. Drop Ht. (lb-ft) Lift 4:	18.510	18.500	18.500	18.520	18.510	18.500	18.510	18.510		
No. of Blows (lb-ft) Lift 1:	53.000	54.000	54.000	54.000	54.000	54.000	55.000	54.000		
No. of Blows (lb-ft) Lift 2:	54.000	53.000	54.000	54.000	54.000	54.000	55.000	54.000		
No. of Blows (lb-ft) Lift 3:	54.000	54.000	54.000	54.000	54.000	54.000	54.000	54.000		
No. of Blows (lb-ft) Lift 4:	54.000	54.000	54.000	54.000	54.000	54.000	54.000	54.000		

Table C.3. ILS Results from Laboratory 3.

Triaxial Test Data Sheet									
Specimen Data									
Specimen Number:	GB-1	GB-2	GB-3	SW-1	SW-2	SW-3	OK-1	OK-2	OK-3
Cell No.:	4	5	6	7	8	9	1	2	3
Wet Mass Spec. & Mold, (lb):	29.382	29.347	29.273	30.250	30.274	30.262	28.995	29.122	29.113
Wet Mass Specimen, (lb):	19.421	19.386	19.312	20.289	20.313	20.301	19.034	19.161	19.152
Initial Height of Specimen, in.:	8.028	7.985	7.989	7.733	7.765	7.818	7.737	7.746	7.820
New Height of Specimen, in.:	8.028	7.985	7.989	7.733	7.765	7.818	7.737	7.746	7.820
Average Diameter, in.:	6.00	6.00	6.00	6.00	6.00	6.00	6.00)	6.00)	6.00
Circumference, in. (manual):									
Circumference, in. (auto):	18.850	18.850	18.850	18.850	18.850	18.850	18.850	18.850	18.850
Area, in.^2:	28.27	28.27	28.27	28.27	28.27	28.27	28.27	28.27	28.27
Avg. Cross Sectional Area, in^2:	28.65	28.68	28.66	28. 60 /	28.69	28.64	28.71	28.69	28.66
Dry-Back Data									
Wet Mass of Pan & Specimen, (Ib)	22.95 5	23.161	23.158	24.056	23.852	24.124	22.532	23.016	22.806
Dry Mass of Pan & Specimen, (lb):	21.778	21.970	21.993	23.125	22.912	23.200	21.342	21.819	21.635
Mass of Pan, (lb):	3. 534	3.774	3.836	3.777	3.546	3.836	3.558	<mark>3.</mark> 895	3.794
Dry Mass of Material, (lb):	18.244	18.196	18.157	19.348	19.366	19.364	17.784	17.924	17.841
Mass of Water, (lb):	1.177	1.191	1.165	0.931	0.940	0.924	1.190	1.197	1.171
Moisture Content, (%):	6.5	6.5	6.4	4.8	4.9	4.8	6.7	6.7	6.6
Wet Density, (pcf).:	144.0	144.5	143.9	156.2	155.7	154.6	146.4	147.2	145.8
Dry Density, (pcf):	135.3	135.6	135.2	149.0	148.5	147.5	137.3	138.0	136.8
SCA Data									
Total Energy (lb-ft) Lift 1:	752.570	761.310	753.370	751.030	755.450	755.560	750.510	753.260	752.060
Total Energy (lb-ft) Lift 2:	754.140	758.790	758.700	750.480	756.570	755.040	751.130	758.880	762.160
Total Energy (lb-ft) Lift 3:	756.110	752.000	75 1 .350	754.730	758.060	758.190	761.690	751.560	760.410
Total Energy (lb-ft) Lift 4:	751.570	7 50 .650	759.380	750.64 0	754.060	753.800	762.410	751.320	753.280
Energy/Lift (lb-ft) Lift 1:	12.760	12.480	12.560	12.520	12.380	12.190	12.940	12.770	12.750
Energy/Lift (lb-ft) Lift 2:	12.570	12.440	12.440	12.510	12.200	11.980	12.950	12.650	12.490
Energy/Lift (lb-ft) Lift 3:	12.600	12.330	12.320	12.370	12.230	12.230	12.690	12.530	12.670
Energy/Lift (lb-ft) Lift 4:	12.530	12.310	12.050	12.110	12.160	11.970	12.500	12.320	12.350
Avg. Drop Ht. (lb-ft) Lift 1:	18.010	17.120	17.990	17.990	17.510	17.980	18.000	18.000	17.870
Avg. Drop Ht. (lb-ft) Lift 2:	17.980	17.170	17.330	17.490	17.080	17.320	17.510	17.280	17.620
Avg. Drop Ht. (lb-ft) Lift 3:	18.000	17.310	17.200	17.980	16.700	17.980	17.990	17.290	17.120
Avg. Drop Ht. (lb-ft) Lift 4:	17.510	18.000	17.250	17.390	17.610	16.790	18.000	18.000	18.000
No. of Blows (lb-ft) Lift 1:	59.000	61.000	60.000	60.0 00	6 1.000	62.000	58.000	59.000	59. 000
No. of Blows (lb-ft) Lift 2:	60.000	61.000	61.000	60.0 00	62.000	63.000	58.000	60.000	61.000
No. of Blows (lb-ft) Lift 3:	60.000	61.000	61.000	61.000	62.000	62.000	60.000	60.000	60.000
No. of Blows (lb-ft) Lift 4:	60 .000	61.000	63.000	62.000	62. 000	63.000	61.000	61.000	61.000

Table C.4. ILS Results from Laboratory 4.

Triaxial Test Data Sheet										
Specimen Data										
Specimen Number:	GB-1	GB-2	GB-3	SW-1	SW-2	SW-3	OK-1	OK-2	OK-3	
Cell No.:	8	9		8	9	28	8	9	28	
Wet Mass Spec. & Mold, (lb):	38.678	38.694	1	39,456	39.799	39.804	38.591	38.687	38.693	
Wet Mass Specimen, (lb):	19.208	19.224		19.986	20.329	20.334	19.121	19.217	19.223	
Initial Height of Specimen, in.:	8.120	8.121		7.827	7.991	8.052	8.192	8.035	8.050	
New Height of Specimen, in.:	7.991	8.052		7.827	7.991	8.052	8.192	8.035	8.050	
Average Diameter, in.:	6.00	6.00		6.00	6.00	6.00	6.00	6.00	6.00	
Circumference, in. (manual):	18.850	18.850		18.900	18.850	18.900	18.900	18.850	19.000	
Circumference, in. (auto):	18.850	18.850		18.900	18.850	18.900	18.900	18.850	19.000	
Area, in.^2:	28.28	28.28		28.35	28.28	28.35	28.35	28.28	28.58	
Avg. Cross Sectional Area, in^2:	28.95	28.84		29.04	28.95	28.92	30.64	29.65	29.04	
Dry-Back Data										
Wet Mass of Pan & Specimen, (lb)	22.932	22.953		23.679	24.068	24.068	22.745	22.869	22.856	
Dry Mass of Pan & Specimen, (lb):	21.782	21.791		22.806	23.158	23.172	21.592	21.672	21.689	
Mass of Pan, (lb):	3.763	3.765		3.763	3.773	3.782	3.765	3.789	3.769	
Dry Mass of Material, (Ib):	18.019	18.026		19.043	19.385	19.390	17.827	17.883	17.920	
Mass of Water, (lb):	1.150	1.162		0.873	0.910	0.896	1.153	1.197	1.167	
Moisture Content, (%):	6.4	6.4		4.6	4.7	4.6	6.5	6.7	6.5	
Wet Density, (pcf).:	144.2	144.3		155.7	155.1	154.0	142.3	145.8	145.6	
Dry Density, (pcf):	135.6	135.6		148.9	148.2	147.2	133.7	136.7	136.7	
SCA Data										
Total Energy (lb-ft) Lift 1:	759.190	753.740		754.540	753.110	755.120	761.850	758.560	761.920	
Total Energy (lb-ft) Lift 2:	751.150	753.610		750.790	750.720	756.350	760.300	751.370	752.030	
Total Energy (lb-ft) Lift 3:	763.600	754.370			753.690	756.040	753.100	751.000	755.270	
Total Energy (lb-ft) Lift 4:	760.395	759.680		761.760	752.640	757.780		754.520	750.150	
Energy/Lift (lb-ft) Lift 1:	13.319	13.460		13.010	12.980	12.590	13.85 0	13.080	13.140	
Energy/Lift (lb-ft) Lift 2:	13.180	13.460		12.940	12.940	12.200	13.340	13.420	13.190	
Energy/Lift (lb-ft) Lift 3:	13.640	13.720			12.990	11.120	13.210	13.180	12.380	
Energy/Lift (lb-ft) Lift 4:	13.840	13.570		13.360	12.760	8.880		13.010	12.930	
Avg. Drop Ht. (lb-ft) Lift 1:	17.450	18.410		17.630	17.650	17.600	18.420	17.880	18.340	
Avg. Drop Ht. (lb-ft) Lift 2:	17.690	18.390		17.410	17.380	16.770	18.290	18.360	18.430	
Avg. Drop Ht. (lb-ft) Lift 3:	18.21 0	18.430			18.200	15.190	18.070	18. 380	18.190	
Avg. Drop Ht. (lb-ft) Lift 4:	18.340	18.420		17.800	16.970	13.290		18.410	18.400	
No. of Blows (lb-ft) Lift 1:	57.000	56.000		58.000	58.000	60.000	55.000	58. 000	58.000	
No. of Blows (lb-ft) Lift 2:	57.000	56.000		58.000	58.000	62.000	55.00 0	56. 000	57.000	
No. of Blows (lb-ft) Lift 3:	56.000	55.000			58.000	68.000	57.000	57.000	61.000	
No. of Blows (lb-ft) Lift 4:	55.000	56.000		57.000	59.000	78.000		58. 000	58.000	

Table C.5. ILS Results from Laboratory 5.

Triaxial Test Data Sheet									
Specimen Data Sheet									
Specimen Number:	GB-1	GB-2	GB-3	SW-1	SW-2	SW-3	OK-1	OK-2	OK-3
Cell No.:	001	002	003	0111	0112	0113	ORT	0172	OIC5
Wet Mass Spec. & Mold, (lb):	30.354	30.347	30.348	31.330	31.446	31.182	30.383	30.414	30.315
Wet Mass Specimen, (lb):	19.089	19.081	19.083	20.065	20.181	19.917	19.118	19.148	19.050
Initial Height of Specimen, in.:	8.100	8.200	7.950	8.000	8.100	7.900	8.200	8.100	8.050
New Height of Specimen, in.:	8.105	8.127	8.198	7.940	7.933	7.925	7.793	7.999	7.847
Average Diameter, in.:	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Circumference, in. (manual):	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Circumference, in. (manual).	18.850	18.850	18.850	18.850	18.850	18.850	18.850	18.850	18.850
	28.27	28.27	28.27	28.27	28.27	28.27	28.27	28.27	28.27
Area, in.42:	28.74								
Avg. Cross Sectional Area, in^2:	20.74	28.84	28 .95	28.89	28.75	28.93	28.60	28.74	28.68
Dry-Back Data									
Wet Mass of Pan & Specimen, (lb)	20.199	20.359	19.940	20.737	20.979	21.288	20.343	20.405	20.065
Dry Mass of Pan & Specimen, (lb):	19.156	19.271	18.871	19.887	20.116	20.463	19.273	19.328	18.975
Mass of Pan, (lb):	1.177	1.321	0.947	0.888	0.864	1.321	1.373	1.384	1.113
Dry Mass of Material, (lb):	17.978	17.950	17.924	18.998	19.252	19.142	17.900	17.944	17.862
Mass of Water, (lb):	1.044	1.088	1.069	0.850	0.863	0.825	1.070	1.077	1.091
Moisture Content, (%):	5.8	6.1	6.0	4.5	4.5	4.3	6.0	6.0	6.1
Wet Density, (pcf).:	143.7	141.9	146.4	152.9	151.9	153.7	142.2	144.1	144.3
Dry Density, (pcf):	135.8	133.8	138.1	146.4	145.4	147.4	134.1	136.0	136.0
SCA Data									
Total Energy (lb-ft) Lift 1:	762.500	754.070	753.410	751.030	762.150	760.810	756.550	753.500	769.770
Total Energy (lb-ft) Lift 2:	758.360	755.990	755.530	762.190	757.990	757.970	756.120	751.180	759.410
Total Energy (lb-ft) Lift 3:	754.720	756.920	753.890	756.880	751.720	757.080	756.830	752.770	758.170
Total Energy (lb-ft) Lift 4:	760.110	752.370	753.830	753.470	750.730	755.020	756.080	753.260	758.400
Energy/Lift (lb-ft) Lift 1:	12.924	12.568	12.557	12.517	12.918	12.895	12.823	12.771	13.272
Energy/Lift (lb-ft) Lift 2:	13.075	13.034	13.026	12.918	13.069	13.068	13.037	12.951	12.871
Energy/Lift (lb-ft) Lift 3:	13.012	12.829	13.226	13.050	13.188	13.053	13.049	12.979	13.072
Energy/Lift (lb-ft) Lift 4:	13.105	12.540	13.225	13.219	13.171	12.797	13.036	12.987	13.076
Avg. Drop Ht. (lb-ft) Lift 1:	17.880	18.290	18.310	18.320	18.290	18.070	18,130	18.110	18.230
Avg. Drop Ht. (lb-ft) Lift 2:	17.830	17.780	18.320	18.280	18.300	18.180	18.280	18.290	18.100
Avg. Drop Ht. (lb-ft) Lift 3:	18.240	18.090	18.310	18.260	18.290	18.130	18.280	18.270	18.280
Avg. Drop Ht. (lb-ft) Lift 4:	18.240	17.960	18.240	18.290	18.240	18.020	18.250	18.240	18.250
No. of Blows (lb-ft) Lift 1:	-59	60	60	60	59	59	59	59	58
No. of Blows (lb-ft) Lift 2:	58	58	58	59	58	58	58	58	59
No. of Blows (lb-ft) Lift 3:	58	59	57	58	57	58	58	58	58
No. of Blows (lb-ft) Lift 4:	58	60	57	57	57	59	58	58	58

Table C.6. ILS Results from Laboratory 6.